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In this work, we analyze the existence and stability of canard solutions in a class of planar
piecewise linear systems with three zones, using a singular perturbation theory approach. To
this aim, we follow the analysis of the classical canard phenomenon in smooth planar slow-
fast systems and adapt it to the piecewise-linear framework. We first prove the existence of
an intersection between repelling and attracting slow manifolds, which defines a maximal
canard, in a non-generic system of the class having a continuum of periodic orbits. Then, we
perturb this situation and we prove the persistence of the maximal canard solution, as well
as the existence of a family of canard limit cycles in this class of systems. Similarities and
differences between the piecewise linear case and the smooth one are highlighted.
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1. Introduction

In the applied dynamical systems community, there is a growing interest in the analysis
of non-smooth systems. This is due to the ability of these systems to model a wide variety
of phenomena [13, 28] that appear to be non-smooth (like the bouncing of a billiard ball).
An interesting class within this framework is that of piecewise linear (PWL) systems.
The first examples of PWL systems appeared in the seminal book of Andronov, Vitt
and Khaikin [1], as a tool to analyze problems coming from engineering, for instance,
the modeling of electronic, mechanical and control systems (using saturation functions,
impacts, switching...). Since then, the ability of PWL systems to reproduce, inter alia,
the behavior of electronic circuits, has been solidly demonstrated (Chua’s circuit [37],
Colpitts’s oscillator [29], Wien-Bridge oscillator [24, 30]). Most importantly, PWL sys-
tems are known to reproduce all aspects of nonlinear dynamics, and the fact that one has
access to explicit solutions in every linearity zone, makes it possible to describe explicitly
some basic elements of the dynamics and geometry of the considered systems. However,
it is neither possible to obtain a general solution nor to apply classical smooth dynamical
systems theory, which creates a need for a new theory specific to PWL systems. More-
over, it has been observed that PWL systems can show new behaviors, impossible to
obtain under differentiability hypothesis; for instance, the fact that the matching of two
stable linear systems can produce unstable dynamics [8].
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In this article, we focus on the canard phenomenon in PWL systems. Canards occur
in systems with multiple time scales. The associated phenomenon, termed canard ex-
plosion [5], manifests itself as a very rapid transition, upon parameter variation, from
small cycles stemming from a Hopf bifurcation to relaxation oscillations, which are large-
amplitude limit cycles formed by alternating slow and fast segments. The transition oc-
curs through a family of cycles, whose characteristic feature is that they contain canard
segments, i.e. orbit segments remaining close to an unstable slow manifold for O(1) pe-
riod on the fast time scale. The canard phenomenon was first reported by Benôıt et al. in
[3] in the context of the Van der Pol system with constant forcing. The limit cycles corre-
sponding to the explosion were termed canard cycles. Following the work presented in [3],
the canard phenomenon has been studied by many authors, using different approaches
[12, 14, 25, 26]. For the sake of completeness, we give a more detailed introduction in
Section 2.

Although canards have already been investigated in the context of PWL systems,
there remain a number of unanswered questions; in particular, a complete theory for
PWL slow-fast systems in the canard regime has not yet been fully developed. The
goal of this paper is to contribute to the foundations of such a theory, by analyzing
the canard phenomenon in PWL systems from the slow-fast viewpoint, that is, using
tools from singular perturbation theory and establishing a parallel between the smooth
and PWL frameworks for canards. The application side is important too, as canards
have been shown over the years to appear in many contexts, in particular, in models
of neurons. Besides, the rationale behind most neuron models is the assumption that
neurons behave, in first approximation, as electronic circuits [17, 32] and PWL systems
have been extensively used to model electronic circuits. On the other hand, neuron models
are characterized by different time scales, and canard phenomena have been found and
studied in many smooth neuron models [6, 22, 27, 31]. This provides additional motivation
to further develop PWL models of neurons and, more generally, of excitable cells.

Early studies on “PWL canards” date back to the 1990’s, when the existence of limit
cycles with canard-like behavior was observed in [2, 23]. Specifically, a PWL version of
the Van der Pol system with three zones was considered in [23], where the cubic fast
nullcline of the smooth model was replaced by the graph of a PWL function with two
corners, which approximate the fold points of the cubic. Numerical evidence was given
that the transition between small and large limit cycles is very fast. Cycles similar to
the small Van der Pol canards (without head) were found, but not the equivalent to the
large canards (with head). In [2], a modification of the previous model was considered.
Namely, the PWL function approximating the cubic from the Van der Pol system was
taken to have four segments instead of three. The added segment was very short, almost
horizontal and centered at one corner point of the previous PWL fast nullcline. Using
a mix of numerical and analytical arguments, the authors could justify the existence of
both small and large canards in their model, that is, cycles that stay close for some time
to the central (repelling) part of the PWL fast nullcline. However, no estimation of the
size of the explosion (in terms of parameter variation) was given. This was done more
recently [9], in the context of the three-zone system from [23], together with the proof
that there is no repelling slow manifold in the middle zone, which was given as one of
the reasons for the absence of canards with head in 3-zone systems. Due to this fact, the
corresponding small canard-like cycles were termed quasi-canards given that they still
lie in parameter space along an explosive solution branch. Among the recent studies on
this topic, there is also a detailed numerical exploration of a 4-zone PWL version of the
FitzHugh-Nagumo system carried out in [36], building on the work of [2].

In the present work, we study a system with three zones, intended as a canonical PWL
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model of transition through canards without head up to the maximal canard. That is, we
only consider the PWL approximation of a Van der Pol type system near one of the folds
of the cubic nullcline. Our system can be seen as a zoom of the models studied in [2, 36]
onto the region of generation of the canard family. Therefore, we consider one zone with
an attracting slow manifold, one zone with a repelling slow manifold, and a small central
zone allowing the passage of solutions from an attracting to repelling slow manifold,
that is, canard solutions. We analyze this canard transition by first proving the existence
of a maximal canard, which corresponds to a connection between an attracting and
a repelling slow manifold, by means of the Implicit Function Theorem. Subsequently,
we investigate how this connection breaks up upon an exponentially small parameter
variation and we show that a family of canards without head is defined by the same
equation up to exponentially small terms. This generation mechanism of canards and its
dependence on the slow-fast structures and on the presence of a transition region, has not
been fully presented in previous studies. In addition, our paper provides the first rigorous
results on canards in the configuration including a nearly horizontal fast nullcline in the
middle zone. In our presentation, we invoke standard singular perturbation techniques
in order to allow for a full comparison with the smooth case. We point out similarities
and differences between our results and the results in the smooth case [3, 25, 26].

The paper is organized as follows. In Section 2, we give a short overview of canard
explosion in the smooth case. In Section 3, we introduce the class of systems we aim to
study. In Section 4, we present the main results of the article, whose proofs are given
in Section 5. Finally, Section 6 is devoted to conclusions and possible extensions of the
present work.

2. Background on canard explosion in the context of smooth systems

We first review the basic ingredients of the canard phenomenon. Our presentation is
based on [25, 26]. Canards appear in planar slow-fast systems of the form{

εẋ = f(x, y, a, ε),

ẏ = g(x, y, a, ε),

or equivalently (as long as ε 6= 0, after a time rescaling of factor 1/ε){
x′ = f(x, y, a, ε),

y′ = εg(x, y, a, ε),

with f, g ∈ Ck, k ≥ 3, a ∈ R, 0 < ε � 1. The main geometric condition is that the fast
nullcline

S = {(x, y) : f(x, y, a, 0) = 0},

also referred to as the critical manifold, has a fold point (x0, y0) for a = a∗ such that
g(x0, y0, a

∗, 0) = 0. Without loss of generality, we can assume that this point is at the
origin and that a∗ = 0. Such a fold point , where an additional condition on g is satisfied,
is called a canard point. For ε 6= 0, the two time parametrizations written above are
equivalent; however, they do not give the same limit for ε = 0. Indeed, one obtains
an approximation of the overall slow dynamics called slow subsystem in the case of the

3



June 22, 2015 Dynamical Systems: An International Journal FGDKT˙rev˙MD

first time parametrization, and an approximation of the overall fast dynamics called fast
subsystem in the case of the second time parametrization. Canard points are defined in
the singular limit ε = 0 as turning points of the fast subsystem. A fold point of the
critical manifold divides it locally into two parts: an attracting branch Sa and a repelling
branch Sr with respect to the flow of the fast subsystem. Away from the singular limit, for
sufficiently small positive ε, these two invariant manifolds of the fast subsystem persist as
locally invariant slow manifolds Sεa and Sεr [16]. Fenichel (slow) manifolds are well defined
only up to fold points, since the normally hyperbolicity of the unperturbed manifold, that
is, the critical manifold, fails at these points. However, Fenichel manifolds are overflowing
and can be extended by the flow. They behave differently near a generic fold point and
near a canard point.

Around a generic fold point, an attracting Fenichel slow manifold Sεa may follow closely
the attracting branch Sa, pass in the vicinity of the fold point, and continue following
approximately the fast dynamics, giving rise to the possibility of relaxation oscillations.
In Fig. 1, the left fold point of the cubic curve is a generic fold point. On the other hand,
around a canard point, the condition g(0, 0, 0, 0) = 0 combined with the non-degeneracy
condition gx(0, 0, 0, 0) 6= 0 (which means that the critical manifold has a non-degenerate
quadratic fold) implies that there exists a solution of the slow subsystem (in the limit
ε = 0) which passes from Sa to Sr. In this case, an attracting Fenichel slow manifold Sεa
may follow closely the attracting branch Sa, pass in the vicinity of the fold point, and
then continue to follow closely the repelling branch Sr. This suggests the existence of
solution of the original system, for 0 < ε� 1, containing canard segments. In Fig. 1, the
right fold of the cubic is a canard point.
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Figure 1. Cubic critical manifold with a generic fold point (left one) and a canard point (right one).

Note that slow manifolds are typically non-unique, but they are exponentially close
to one another so that suitable choices can be made, according to the context. This
enables to study the respective positions of attracting and repelling slow manifolds and
to show the existence of canards. Indeed, the presence of exponentially small terms in ε-
expansions of the slow manifolds implies that their respective position can change upon an
exponentially small parameter variation. When Sεa is closer to the critical manifold than
Sεr in the repelling region, this forces the existence of canards without head. For similar
reasons, when Sεr is closer to the critical manifold than Sεa in the repelling region, canards
with head can exist. The transition from one type of canards to the other occurs when
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Sεa is connected to Sεr . This happens along a curve in the parameter plane (ε, a) and the
associated canard solution is said to be a maximal canard. Canard cycles develop along
a branch born at a Hopf bifurcation and the canard explosion takes place at a distance
of O(ε) from the Hopf point; this means that very close to the bifurcation, before the
explosion, the cycles have the characteristics of typical Hopf cycles. This Hopf bifurcation
arises only for ε > 0 and is usually referred to as a singular Hopf bifurcation [4, 21].

In the Van der Pol system, the singular Hopf bifurcation occurs exactly at the fold of
the critical manifold, but this situation is not generic. Indeed, by adding a dependence
on y in the slow equation, one can construct canard-explosive systems where the Hopf
bifurcation generically occurs at an O(ε)-distance from the fold point. A simple example
of such a system is {

x′ = −y + x2 − x3,

y′ = ε(x− a+ γy),
(1)

with a ' 0, γ ∈ R, 0 < ε � 1 and where the prime denotes the derivative with
respect to the time t. When a = 0, system (1) has a fold point at (x, y) = (0, 0). Upon
variation of parameter a, one can obtain small canard cycles, maximal canards, large
canard cycles and relaxation oscillations; note that the criticality of the Hopf bifurcation
depends on the size and sign of γ. Furthermore, system (1) allows for multi-stability and
global bifurcations (homoclinic connections) that can terminate prematurely the canard
explosion. In terms of applications, system (1) is very similar to the FitzHugh-Nagumo
equation, which is the simplest smooth planar mathematical model of a neuron [17,
32]. The simplest smooth slow-fast dynamical system displaying canard solutions is a
quadratic vector field similar to (1) but without the cubic term in the first equation and
with a = γ = 0 in the second. That minimal canard system is sometimes referred to
as the singular fold system [25], it is Hamiltonian and possesses a continuum of canard
periodic orbits; we will study a PWL equivalent of the singular fold in the next section.
However, canard cycles are only possible when adding a cubic term to the singular fold
system.

3. Piecewise linear systems with three zones. First properties

Following the ideas (from [2]) of adding a small piece in the corner to generate canard
cycles, we consider the following class of planar piecewise linear systems with three zones
depending on three parameters, {

x′ = y + f(x, b, ε),
y′ = ε(a− x),

(2)

where

f(x, b, ε) =

 x+ ε, if x ≤ −ε/(1− b),
bx, if − ε/(1− b) < x ≤ ε/(b+ 1),
−x+ ε, if x > ε/(b+ 1),

with (x, y)T ∈ R2, 0 < ε� 1, |b| < 2
√
ε and a ∈ (−ε/(1− b), ε/(b+ 1)).

Note that the nonlinearity is gathered in the first component of the vector field, and
that the second component of the vector field is continuous. In these systems, the three
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linearity zones are separated by the straight lines x = −ε/(1 − b) and x = ε/(1 + b).
Thus, we will call the left L, central C and right R zones the regions of the phase plane
defined by x < −ε/(1 − b), −ε/(1 − b) < x < ε/(b + 1) and x > ε/(b + 1), respectively.
Moreover, we will sometimes use the term “exterior zones” to refer to both left and right
zones. Finally, for every point p = (x0, y0)T ∈ R2 and parameter vector η = (a, b, ε), we
will denote by

x(t;η,p) = (x(t;η,p), y(t;η,p))T

the solution of system (2) with parameters a, b, ε and initial condition x(0;η,p) = p.
Sometimes, we use the superscripts L, C or R to refer to the zone of the system where
we are computing the solution, namely, left, central or right. We can now state a few
general properties of this family of systems.

System (2) possesses exactly one equilibrium point which is in central zone C, namely,
qC = (a,−ab)T . The topological type of the equilibrium can be easily checked and
depends on parameter b. If b = 0, the equilibrium point qC is a center. If b < 0, (resp.
b > 0) it is a stable, (resp. unstable) focus. The orientation is clockwise in the three
cases.

Apart from the equilibrium point qC , there are two other points that are not real
equilibria of the system, yet influence the dynamics in a similar way that an equilibrium
does. These are qL = (a,−a−ε) and qR = (a, a−ε). Point qL (resp. qR), is an equilibrium
point of the system of the left (resp. right) zone, but both are located in the central zone.
These points are usually called virtual equilibrium points in the context of PWL systems.
It is easy to compute their topological types. Point qL, (resp. qR) is an unstable (resp.
stable), node; see Fig. 2.

The eigenvalues of the left zone coefficient matrix are given by

λLs =
1−
√

1− 4ε

2
and λLf =

1 +
√

1− 4ε

2
. (3)

It is easy to see that λLf > λLs > 0, and that

lim
ε→0

λLs = 0+ and lim
ε→0

λLf = 1−.

The straight lines

µLs ≡ y = −ε(x− a)

λLs
− a− ε and µLf ≡ y = −ε(x− a)

λLf
− a− ε (4)

are the invariant spaces corresponding to the weak and the strong eigenvalue, respectively,
for the virtual equilibrium point qL. Note that they are invariant manifolds only for the
flow in the left zone. The slope of µLf tends to zero as ε → 0 and that the slope of µLs
tends to −1 as ε→ 0.

Consider now the eigenvalues of the right zone coefficient matrix,

λRs =
−1 +

√
1− 4ε

2
and λRf =

−1−
√

1− 4ε

2
. (5)
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Figure 2. Zones of linearity, nullclines and equilibria (real and virtuals) of system (2).

It is easy to see that λRf < λRs < 0, and that

lim
ε→0

λRs = 0− and lim
ε→0

λRf = −1+.

The straight lines

µRs ≡ y = −ε(x− a)

λRs
+ a− ε and µRf ≡ y = −ε(x− a)

λRf
+ a− ε (6)

are the invariant spaces corresponding to the weak and the strong eigenvalue, respectively,
for the virtual equilibrium point qR. Note that they are invariant manifolds only for the
flow in the right zone. The slope of µRf tends to zero as ε→ 0 and the slope of µRs tends

to 1 as ε→ 0. Note that λLs = −λRs and λLf = −λRf .
The invariant space of the right zone µRs is strongly attracting and the invariant space

of the left zone µLs is strongly repelling. As ε→ 0 they approach the critical manifold of
the system, namely, y = |x|. It follows that µRs , (resp. µLs ) provides a canonical choice
of an attracting Fenichel slow manifold Sεa, (resp. repelling Fenichel slow manifold Sεr)
[15, 16, 33, 34]; see Fig. 3. Moreover, the central zone is letting the flow pass through,
from the attracting manifold Sεa to the repelling manifold Sεr . Thus, the class of systems
(2) possesses, in principle, all the ingredients to have canard cycles. In the following we
focus on the proof of this fact.
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Figure 3. Zones of linearity, nullclines, equilibria (real and virtuals) of system (2) and slow manifolds correspond-
ing to the virtual nodes of the exterior zones.

4. Main results: Maximal canard solution and family of canard cycles

In this section, we state the main results of the article. We first aim to find conditions
such that the family of systems (2) possesses a maximal canard solution. To this end, we
begin by analyzing the non-generic system of the family, for a = b = 0.

Theorem 4.1: System (2) with a = b = 0 and 0 < ε � 1, possesses a continuum of
periodic orbits bounded below by the slow manifolds µLs and µRs in their corresponding
zones, and by the connection from µRs to µLs in the central zone. Below the continuum,
the orbits cross from the right zone to the central one and later to the left zone, where
they escape to infinity.

Proof. In this case, the real equilibrium is qC = (0, 0)T and it is a center. The virtual
equilibria coincide qL = qR = (0,−ε)T . Since, in this case, the system is time-reversible
with respect to the involution R(x, y) = (−x, y), the conclusion follows.

Fig. 4 shows the phase portrait of system (2) under the hypotheses of Theorem 4.1.
Note that the non-generic situation described in Theorem 4.1, is analogous to that of the
Hamiltonian system found in the local analysis around the canard point in the smooth
case [18, 25, 26]. In this case, we find a special orbit which bounds the continuum of
periodic orbits. This orbit is formed by three different parts: the slow invariant manifolds
µLs and µRs in their corresponding zones, and their connection in the central zone. As it
was previously noted, in system (2) the slow invariant manifolds µLs and µRs play the role
of the attracting and repelling slow invariant manifolds Sεr and Sεa. Then, we can say that
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Figure 4. Phase portrait of system (2) with a = b = 0 and ε = 0.1. We also represent the slow manifolds µLs and

µRs , and in dashed the separation lines.

this special orbit is the maximal canard orbit and the periodic orbits of the continuum
are canard periodic orbits.

The question that naturally arises is whether, by perturbing this non-generic situation,
it is possible to find appropriate values of the parameters such that the maximal canard
orbit persists. In the next theorem, we state the existence of a curve in the parameter
space a = ã(b, ε), such that the maximal canard remains after the perturbation.

Theorem 4.2: There exists a function a = ã(b, ε), analytic as function of (b,
√
ε), de-

fined in an open set U ⊂ R2 containing (b, ε) = (0, 0), and such that, for (b, ε) ∈ U ∩{ε >
0}, system (2) possesses an orbit connecting the slow manifolds of the exterior zones.

Proof. See Subsection 5.1.

From the existence of the maximal canard solution, the existence of a family of isolated
canard limit cycles in system (2) follows. This is stated in the following theorem.

Theorem 4.3: For each point (0, y0) with y0 > 0, there exists Û ⊂ R2 containing

(b, ε) = (0, 0), such that, for (b, ε) ∈ Û ∩ {ε > 0}, there exists â(b, ε) with the same first
terms of the Taylor series expansion as ã(b, ε) given in Theorem 4.2, such that system
(2) possesses a canard limit cycle passing through (0, y0).

Proof. See Subsection 5.2.

Although it is not necessary to obtain an explicit approximation of the parameter
function ã(b, ε) in order to prove the previous existence theorems, it becomes necessary
when analyzing the stability of the canard cycles. Also, the approximation is interesting
by itself, because it allows us to control the location where the canard explosion takes
place. The approximation of ã(b, ε) is included in next proposition.

Proposition 4.4: Let ã = ã(b, ε) be the function defined in Theorem 4.2. The Taylor
series expansion with respect to b around b = 0 is given by

ã(b, ε) = ε((τ∗/2)− 1)b/2 +O(b3) =
(π

4

√
ε+O(ε)

)
b+O(b3), (7)
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where

τ∗ =
π − sin−1(2

√
ε)√

ε
. (8)

Proof. See Subsection 5.3.

The approximation of the parameter function ã(b, ε) obtained in Proposition 4.4, en-
ables us to establish, in the next theorem, the stability of the family of canard cycles.

Theorem 4.5: The family of canard limit cycles whose existence is stated in Theorem
4.3 is asymptotically stable if b > 0 and unstable if b < 0.

Proof. See Subsection 5.4.

Remark 4.6: Note that Theorem 4.5 implies the uniqueness of canard cycles. Indeed,
if there existed two canard cycles for the same parameter values, one would have to be
inside the other and the region between them would have to contain a canard cycle of
opposite stability.

In Fig. 5, we represent a stable canard cycle of system (2) and two orbits in its basin of
attraction. We take advantage of formula (7) to set appropriate values of the parameters
such that the canard exists.

•

•

0

0.4

0.8

-0.8 -0.4 0.4 0.8x

y

µL
s µR

s

Figure 5. Phase portrait of system (2) with a stable canard cycle (thick black orbit), for b = 0.009944, ε = 0.1 and

a = â(b, ε). We also represent the slow invariant manifolds µLs and µRs (solid black lines) and the separation lines

(dashed). Two trajectories converging towards the stable canard cycles are shown (in blue), the initial condition
is indicated by a dot and the direction of motion by an arrow.

Theorems 4.2 and 4.3 assert the existence of maximal canard cycles and of isolated
canard limit cycles in the PWL family of systems (2). Moreover, in Theorem 4.5 the
stability of such cycles is established. These results allow us so far to point out similarities
and differences between canard phenomena in the PWL framework and in the classical
smooth context. We find very similar features between both phenomena. In particular, if
in the smooth case the limit cycles that become canards are born in a Hopf bifurcation,
in the PWL case we can say that their birth takes place in a Hopf-like bifurcation [19, 20]
that occurs when the real equilibrium point crosses from one of the exterior zones to the
central one, by moving parameter a. In the following remark, we explain this bifurcation
structure in more detail; see Fig. 6.
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Remark 4.7: In this remark, we consider b = O(
√
ε) and b̂ defined by b = 2

√
εb̂.

(1) Consider b > 0. A supercritical Hopf-like bifurcation takes place when the equilib-
rium crosses from the right to the central zone, i.e., at

aRH(b, ε) =
ε

b+ 1
=

ε

2b̂
√
ε+ 1

= ε+O(ε3/2) > 0.

Thus, as parameter a decreases through aRH , there appears a two-zonal stable limit
cycle contained in both the central and the right zones. The amplitude of the
limit cycle is growing linearly in the two zones until it crosses the left bound
x = −ε/(1− b) and becomes a three-zonal limit cycle. Then, the left linear system
affects the dynamics and the limit cycle becomes a canard. While a decreases,
the amplitude of the canard cycle is increasing until the value where the maximal
canard occurs, namely,

ã(b, ε) =
(π

4

√
ε+O(ε)

)
b+O(b3) =

π

2
b̂ε+O(ε3/2) > 0,

and afterwards the limit cycle disappears.
(2) Consider b < 0. A subcritical Hopf-like bifurcation takes place when the equilibrium

crosses from the left to the central zone, i.e., at

aLH(b, ε) = − ε

1− b = − ε

1− 2b̂
√
ε

= −ε+O(ε3/2) < 0.

Thus, as parameter a increases through aLH , there appears a two-zonal unstable
limit cycle contained in both the left and the central zones. The amplitude of the
limit cycle is growing linearly in the two-zones until it crosses the right bound
x = ε/(1 + b) and becomes a three-zonal limit cycle. Then, the right linear system
affects the dynamics and the limit cycle becomes a canard. While a increases, the
amplitude of the canard cycle is increasing until the value where the maximal
canard occurs, namely,

ã(b, ε) =
(π

4

√
ε+O(ε)

)
b+O(b3) =

π

2
b̂ε+O(ε3/2) < 0,

and afterwards the limit cycle disappears.

Remark 4.7 clarifies that we can reproduce, with the class of PWL systems (2), bifur-
cation diagrams similar to that obtained in the smooth case [25, 26]. In Fig. 6, we have
represented the bifurcation diagram corresponding to the case b > 0.

5. Proofs of the main results

This section focuses on the proof of the results stated in Section 4. We begin with the
proof of Theorem 4.2 about the existence of the maximal canard solution.

11
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Figure 6. Panel (a) : Bifurcation diagram for b̂ > 0. Consider ε > 0 fixed and a > 0 in the rightmost sector. By

decreasing a, a Hopf-like bifurcation takes place, giving rise to a small stable limit cycle. The limit cycle is growing
while a decreases. When a arrives to the grey shaded region, the limit cycle becomes a canard cycle. Along the

leftmost line the family of canard cycles ends at a maximal canard connection. Panel (b) : Explosive branch of

limit cycles obtained by direct simulation when varying parameter a for fixed ε = 0.1 and b = 0.009944.

5.1. Proof of Theorem 4.2

From now on, we denote pRs (η), where η = (a, b, ε), the intersection point between the
right slow manifold µRs and the separation line x = ε/(1 + b), and pLs (η) the intersection
point between the left slow manifold µLs and the separation line x = −ε/(1 − b). The
existence of the maximal canard solution reduces to the existence of an orbit connecting
points pRs and pLs (see Fig. 7). The set of conditions characterizing this connection is
given by the existence of τ > 0, 0 < ε � 1, |b| < 2

√
ε and a ∈ (−ε/(1 − b), ε/(b + 1)),

such that, for

pRs (η) =
(
ε/(1 + b), a− ε− ε(ε/(1 + b)− a)/λRs

)T
:= (xR0 , y

R
0 )T , (9)

the following conditions hold:

xC(τ ;η,pRs ) = − ε

1− b , (10)

yC(τ ;η,pRs ) = − ε

λLs
(xC(τ ;η,pRs )− a)− a− ε, (11)

xC(s;η,pRs ) ∈
(
− ε

1− b ,
ε

1 + b

)
for all s ∈ (0, τ). (12)

In a first step, we analyze the existence of solutions to the set of conditions (10)-
(11), that is, the closing equations associated to the connection. We define the following
functions, 

F (τ, a, b, ε) = xC(τ ;η,pRs ) +
ε

1− b ,

G(τ, a, b, ε) = yC(τ ;η,pRs ) +
ε

λLs
(xC(τ ;η,pRs )− a) + a+ ε.

(13)

Thus, the solution of the closing equations is equivalent to the solution (τ, a, b, ε) of the

12
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Figure 7. Representation of the possible maximal canard in system (2).

system {
F (τ, a, b, ε) = 0,
G(τ, a, b, ε) = 0.

(14)

Furthermore, the inequality (12) is equivalent to

F (s, a, b, ε) ∈
(

0,
ε

1− b +
ε

1 + b

)
for all s ∈ (0, τ). (15)

By integrating the linear system of the central zone with initial condition pRs , we obtain
the following explicit expression of the solution,

xC(τ ;η,pRs ) = exp((bτ)/2)
ab+ a− ε

(b+ 1)
√

4ε− b2

·
(

(b− 2λRs ) sin(β̃τ)− 2β̃ cos(β̃τ)
)

+ a,

yC(τ ;η,pRs ) = exp((bτ)/2)
ab+ a− ε

(b+ 1)
√

4ε− b2

·
(

(b(λRs − b) + 2ε) sin(β̃τ) + 2β̃(b− λRs ) cos(β̃τ)
)
− ab,

(16)

where

β̃(b, ε) =
√

4ε− b2/2.

13
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After rescaling parameters as follows :

b = 2b̂
√
ε; τ = τ̂ /

√
ε; a = âε, (17)

we find a branch of solutions of system (14), described in the following lemma.

Lemma 5.1: There exist an open set U ⊂ R2 containing (b̂, ε) = (0, 0) and two analytic

functions τ̄(b̂, ε) and ā(b̂, ε) defined in U, such that τ̄(0, 0) = π, ā(0, 0) = 0 and when
ε > 0

(τ̃(b, ε), ã(b, ε), b, ε)

is a solution of system (14), where

τ̃(b, ε) = τ̄(b/(2
√
ε), ε)/

√
ε

and

ã(b, ε) = ā(b/(2
√
ε), ε)ε.

Proof. Let

φ(τ̂ , â, b̂, ε) =
exp(b̂τ̂)(â− 1 + 2

√
εâb̂)

(1 + 2
√
εb̂)
√

1− b̂2
,

θ(b̂, τ̂) = τ̂
√

1− b̂2.
(18)

It follows from the definition of F (see (13)) and the formula for xC (see (16)) that

F = εF̂ , where F̂ is given by

F̂ (τ̂ , â, b̂, ε) = φ

(
−
√

1− b̂2 cos(θ) + (b̂+
√
ε) sin(θ)

)
+ â+

1

1− 2
√
εb̂

+O(ε). (19)

For G the estimate is more involved. First, note that

yC = ε3/2

(
φ((2b̂+

√
ε)

√
1− b̂2 cos(θ) + (1− 2b̂2 +

√
εb̂) sin(θ))− 2âb̂+O(ε)

)
.

Second, we re-write G as follows

G = yC +
ε

λLs
F − ε

λLs

(
ε

1−√εb̂
+ εâ

)
+ εâ+ ε.

By (3) it is clear that ε/λLs = 1 +O(ε), hence,

− ε

λLs

(
ε

1−√εb̂
+ εâ

)
+ εâ+ ε = − ε

1− 2
√
εb̂

+ ε+O(ε2) = −2ε3/2b̂+O(ε2).

14
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It now follows that G = ε3/2Ĝ+ (ε/λLs )F̂ , where F̂ is given by (19) and

Ĝ(τ̂ , â, b̂, ε) = φ

(
(2b̂+

√
ε)

√
1− b̂2 cos(θ) + (1− 2b̂2 +

√
εb̂) sin(θ)

)
− 2âb̂− 2b̂+O(ε).

Hence, solving F = G = 0 for ε > 0 is equivalent to solving F̂ = Ĝ = 0. For ε = 0, we
have

F̂ =
exp(b̂τ̂)(â− 1)√

1− b̂2

(
−
√

1− b̂2 cos(θ) + b̂ sin(θ)

)
+ â+ 1,

Ĝ =
exp(b̂τ̂)(â− 1)√

1− b̂2

(
2b̂

√
1− b̂2 cos(θ) + (1− 2b̂2) sin(θ)

)
− 2âb̂− 2b̂.

(20)

For â = b̂ = 0, equation F̂ = 0 gives the condition cos(τ̂) = −1, which yields τ̂ = π.

Further Ĝ = 0 is satisfied for â = b̂ = 0 and τ̂ = π. To apply the Implicit Function
Theorem, it is necessary to prove that det(J(π, 0, 0, 0)) 6= 0, where

J(τ̂ , â, b̂, ε) =


∂F̂

∂τ̂
(τ̂ , â, b̂, ε)

∂F̂

∂â
(τ̂ , â, b̂, ε)

∂Ĝ

∂τ̂
(τ̂ , â, b̂, ε)

∂Ĝ

∂â
(τ̂ , â, b̂, ε)

 . (21)

It is easy to see that

∂F̂

∂â
(π, 0, 0, 0) = 2,

∂F̂

∂τ̂
(π, 0, 0, 0) = 0,

∂Ĝ

∂â
(π, 0, 0, 0) = 0,

∂Ĝ

∂τ̂
(π, 0, 0, 0) = 1,

and then, det(J(π, 0, 0, 0)) = −2 6= 0. Hence, the Implicit Function Theorem yields a

solution defined on a neighborhood of (0, 0) in the (b̂, ε) plane. Moreover

∂F̂

∂b̂
(π, 0, 0, 0) = −π, ∂Ĝ

∂b̂
(π, 0, 0, 0) = 0.

To ensure the existence of the connection, we must prove that the solutions of the
closing equations (10) and (11), whose existence is guaranteed by Lemma 5.1, satisfy
inequality (12), or equivalently, (15). Geometric arguments will allow us to conclude
that they actually correspond to the connection between the slow manifolds of the right
and left zones of system (2).

As an auxiliary result, we obtain the solution corresponding to the non-generic case
presented in Theorem 4.1.

15
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Lemma 5.2: For a = b = 0 system (14) has the explicit solution

τ∗ =
π − sin−1(2

√
ε)√

ε
,

with 0 < ε� 1. This solution corresponds to the non-generic case presented in Theorem
4.1.

Proof. This follows from a straightforward computation.

Finally, the next lemma finishes the proof of Theorem 4.2.

Lemma 5.3: Functions τ̃ = τ̃(b, ε) and ã = ã(b, ε), given in Lemma 5.1, satisfy inequal-
ity (15) for every |b| 6= 0, 0 < ε� 1.

Proof. We need to prove

F (s, ã, b, ε) ∈
(

0,
ε

1− b +
ε

1 + b

)
for all s ∈ (0, τ̃).

We proceed by contradiction. Assume that there exists τ1 < τ̃ such that F (τ1, ã, b, ε) >
ε/(1− b) + ε/(1 + b), or equivalently, xC(τ1; η̃,pRs (η̃)) > −ε/(1− b), where η̃ = (ã, b, ε).
Then, to allow the flow to come back to the line x = −ε/(1 − b), it is necessary that
τ̃ ≥ 2π/

√
ε ≥ 2τ∗, where τ∗ is given in (8) and corresponds to the solution for a = b = 0.

But τ̃(0, ε) = τ∗, which contradicts τ̃ ≥ 2τ∗. An analogous reasoning allows to prove
that F (s, ã, b, ε) > 0 for all s ∈ (0, τ̃).

Therefore, the proof of the existence of a subfamily of the PWL systems (2) having
a maximal canard solution, is now complete. In the following remark, we present an
alternative proof of Theorem 4.2. based on the fact that system (2) is time-reversible
with respect to the involution

Q(a, b, ε, x, y) = (−a,−b, ε,−x, y). (22)

Albeit more direct, this alternative argument is also more difficult to generalize. More-
over, following this approach it is not possible to arrive to the explicit expression of a
that we obtain in Proposition 4.4 and that we use later to deal with the stability of the
canard solutions.

Remark 5.4: System (2) is time-reversible with respect to the involution (22). Define
the function σ(a, b, ε) as the second component of the intersection with the line x = a
of the orbit with initial condition (9). Since the dynamics in the central zone is of focus
type, the function σ it is always defined and is an analytical function of ε > 0, a and b,
as the Poincaré map. Taking into account the symmetry, the condition of existence of
the maximal canard reads

ω(a, b, ε) := σ(a, b, ε)− σ(−a,−b, ε) = 0. (23)

It is easy to see that σ(a, b, ε) ≤ −ab. The equality arises only when the equilibrium is
in the right boundary, that is a = ε/(1 + b). Hence,

ω(−ε/(1− b), b, ε) < 0 < ω(ε/(1 + b), b, ε).

16
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Note that σ(a, b, ε) is an increasing function of a because, as a increases, the vertical
nullcline is approaching the right boundary and the actual orbit arrives before and above
x = a. Then, for each (b, ε), there exits a unique value ã(b, ε) of a satisfying (23). To prove
the analyticity, consider the change (17) together with (x, y) = (x̂ε, ŷε3/2). In the new

variables, σ is an analytic function of (â, b̂, ε). To find the lowest order approximation of
function σ we work with the rescaled problem for ε = 0. A computation similar to the
one used to obtain (20) yields

σ(â, b̂, 0) = (â− 1) exp

(
b̂ arccos b̂√

1− b̂2

)
− 2âb̂,

and consequently

ω(â, b̂, 0) = exp

(
b̂ arccos b̂√

1− b̂2

)(
â

(
1 + exp

(
−b̂π√
1− b̂2

))
− 1 + exp

(
−b̂π√
1− b̂2

))
.

The derivative of ω with respect to a is non zero, and it is possible to apply the Implicit
Function Theorem, where the analyticity of ã(b,

√
ε) follows.

In next subsection, we focus on the proof of Theorem 4.3. We are going to use the
results of this section to establish the existence of canard cycles in the family of PWL
systems (2).

5.2. Proof of Theorem 4.3

Consider a point (0, y0) with y0 > 0. By integrating backwards, the orbit will cross
from the central to the left zone and will reach a neighborhood of µLs in an O(ε) time.
After that, as the manifold µLs is repelling and we are integrating backwards, the orbit
targets the central zone, while the distance to µLs is contracting with contraction rate
O(exp(−c/ε)), where c is a positive constant depending on y0, for a time interval of order
one. Thus, the orbit reaches the central zone at a point p1 which is exponentially close to
the intersection between the invariant manifold µLs and the separation line x = −ε/(1−b),
denoted pLs .

By integrating forward, the orbit will cross from the central to the right zone and will
reach a neighborhood of µRs in O(ε) time. After that, as the manifold µRs is attracting, the
orbit targets the central zone, while the distance to µRs is contracting with contraction rate
O(exp(−c/ε)), where c is a positive constant depending on y0, for a time interval of order
one. Thus, the orbit reaches the central zone at a point p−1 which is exponentially close to
the intersection between the invariant manifold µRs and the separation line x = ε/(1+b),
that is, pRs given in (9).

Regarding the connection between p−1 and p1, note that p−1 and p1 and their deriva-
tives are exponentially close to pRs and pLs and their derivatives, respectively. It follows
that the equations establishing the connection between p−1 and p1 has the form(

F (τ, a, b, ε)
G(τ, a, b, ε)

)
+ ξ(y0, a, b, ε) =

(
0
0

)
,

where F and G are the functions establishing the connection between pRs and pLs
(14) given in (13), and ξ(y0, a, b, ε) = (ξ1(y0, a, b, ε), ξ2(y0, a, b, ε)) with ξ1(y0, a, b, ε),

17
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ξ2(y0, a, b, ε) and their derivatives are O(exp(−c/ε)) small, where c is a positive con-
stant depending on y0. Thus, we can apply the Implicit Function Theorem to the set of
equations which establish the connection between p−1 and p1, as we did to equations
(14).

Therefore, one obtains the existence of Û ⊂ R2 containing (b, ε) = (0, 0), such that,

for (b, ε) ∈ Û ∩ {ε > 0}, there exists â(b, ε) with the same first terms of the Taylor series
expansion as ã(b, ε) given in Theorem 4.2, such that system (2) possesses a canard limit
cycle.This concludes the proof.

5.3. Proof of Proposition 4.4

We proceed by implicit differentiation. From Lemma 5.1, (τ̃(b, ε), ã(b, ε), b, ε) is a solution
of system (14), that is, {

F (τ̃(b, ε), ã(b, ε), b, ε) = 0,
G(τ̃(b, ε), ã(b, ε), b, ε) = 0,

(24)

and then, from Lemma 5.2, it satisfies τ̃(0, ε) = τ∗ and ã(0, ε) = 0. Let us denote

p∗ = pRs (0, 0, ε) = (ε, λRs ε).

By taking derivatives in system (24) with respect to b at b = 0, it is easy to see that
∂τ̃
∂b (0, ε) and ∂ã

∂b (0, ε) must satisfy the system of equations
∂F

∂τ
(τ∗, 0, 0, ε)

∂F

∂a
(τ∗, 0, 0, ε)

∂G

∂τ
(τ∗, 0, 0, ε)

∂G

∂a
(τ∗, 0, 0, ε)




∂τ̃

∂b
(0, ε)

∂ã

∂b
(0, ε)

 = −


∂F

∂b
(τ∗, 0, 0, ε)

∂G

∂b
(τ∗, 0, 0, ε)

 . (25)

Let us begin with the computation of ∂G
∂τ (τ, a, b, ε). From the definition of function G,

(see (13))

∂G

∂τ
(τ, a, b, ε) =

∂yC

∂τ
(τ ;η,pRs ) +

ε

λLs

(
∂xC

∂τ
(τ ;η,pRs )

)
. (26)

From system (2), in the central zone ẋ = y + bx, ẏ = ε(a− x), and then,

∂G

∂τ
(τ, a, b, ε) = ε(a− xC(τ ;η,pRs )) +

ε

λLs

(
yC(τ ;η,pRs ) + bxC(τ ;η,pRs )

)
. (27)

Now, it follows from xC(τ∗;0,p∗) = −ε, yC(τ∗;0,p∗) = λRs ε, and expression (27) that

∂G

∂τ
(τ∗, 0, 0, ε) = 0.

The computation of ∂F
∂τ (τ, a, b, ε) is similar to ∂G

∂τ (τ, a, b, ε),

∂F

∂τ
(τ, a, b, ε) =

∂xC

∂τ
(τ ;η,pRs ) = yC(τ ;η,pRs ) + bxC(τ ;η,pRs ), (28)
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and then,

∂F

∂τ
(τ∗, 0, 0, ε) = yC(τ∗;0,p∗) = λRs ε.

Now, we obtain ∂G
∂a (τ, a, b, ε). From definition (13),

∂G

∂a
(τ, a, b, ε) =

∂yC

∂a
(τ ;η,pRs ) +

ε

λLs

(
∂xC

∂a
(τ ;η,pRs )− 1

)
+ 1. (29)

From the explicit expression of the solution in the central zone given in (16), it is not
difficult to arrive at

∂xC

∂a
(τ∗;0,p∗) = 2,

∂yC

∂a
(τ∗;0,p∗) = 2λR2 ,

(30)

from which we get

∂G

∂a
(τ∗, 0, 0, ε) = 2.

Now, we only need to find ∂F
∂a (τ∗, 0, 0, ε) to finish the computation of the coefficient

matrix of system (25). By taking the derivative of function F with respect to a,

∂F

∂a
(τ, a, b, ε) =

∂xC

∂a
(τ ;η,pRs ). (31)

In light of the first expression of (30), the evaluation in (τ∗, 0, 0, ε), lead us to

∂F

∂a
(τ∗, 0, 0, ε) = 2. (32)

Let us now compute the second member of system (25). From the definition of function
F, (see (13))

∂F

∂b
(τ, a, b, ε) =

∂xC

∂b
(τ ;η,pRs ) +

ε

(1− b)2
, (33)

and then,

∂F

∂b
(τ∗, 0, 0, ε) =

∂xC

∂b
(τ∗;0,p∗) + ε. (34)

From the explicit expression of the solution in the central zone given in (16), we obtain

∂xC

∂b
(τ∗;0,p∗) = −(ετ∗)/2,

∂yC

∂b
(τ∗;0,p∗) = ε (1− τ∗/2) ,

(35)
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and from the first expression here, we get

∂F

∂b
(τ∗, 0, 0, ε) = ε (1− τ∗/2) . (36)

Regarding ∂G
∂b (τ∗, 0, 0, ε), from the definition of function G (see again (13)), we have

∂G

∂b
(τ, a, b, ε) =

∂yC

∂b
(τ ;η,pRs ) +

ε

λLs

∂xC

∂b
(τ ;η,pRs ). (37)

From expressions in (35), we get

∂G

∂b
(τ∗, 0, 0, ε) = ε (1− τ∗/2) , (38)

which is the same as ∂F
∂b (τ∗, 0, 0, ε).

Thus, we obtain that system (25) is equivalent to

(
λRs ε 2

0 2

)
∂τ̃

∂b
(0, ε)

∂ã

∂b
(0, ε)

 = ε (τ∗/2− 1)

(
1

1

)
.

When ε 6= 0, this system has a unique solution, which is given by

∂τ̃

∂b
(0, ε) = 0 and

∂ã

∂b
(0, ε) = −ε (τ∗/2− 1) /2.

Analogously, the implicit differentiation of functions F and G up to order two allows us
to obtain the second-order derivatives. This finishes the proof.

We use the approximation of ã(b, ε) obtained in this section to establish the stability
of the corresponding canard cycles.

5.4. Proof of Theorem 4.5

Let us now focus on the stability of the family of canard cycles; see Fig. 8. First, we are
going to measure how the orbits approach the slow manifolds µLs and µRs , in their respec-
tive zones. The intersection between the left slow manifold µLs and the left separation line
x = −ε/(1− b) := xL0 is given by pLs = (xL0 , y

L
0 )T , with yL0 = −a− ε+ (ε/(1− b) +a)/λLs .

Consider an orbit with initial point in the left straight separation line above the invariant
manifold µLs and below the line y = −x, that is, p1 = (xL0 , y

L
0 +δ)T , with δ > 0 and small

enough. At each time t, the distance between that orbit and the invariant manifold µLs
is given by

dL(t;η, δ) = αL exp(λLs t)v
L
s + βL exp(λLf t)v

L
f , (39)

where

vLs = pLs − qL =

(
ε

1− b + a

)(
−1,

ε

λLs

)T
and vLf = (−λLf , ε)T
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Figure 8. Sketch of the canard cycle (in black) and one orbit close to it (in blue) for the stable case b > 0.

are the eigenvectors corresponding to the eigenvalues λLs , λ
L
f , and qL is the virtual equi-

librium point of the left zone. By imposing dL(0;η, δ) = (0, δ)T , one can compute

αL = −
βLλLf
ε

1−b + a
, βL =

δλLs
ε(λLs − λLf )

.

The intersection between the right slow manifold µRs and the right separation line
x = ε/(1 + b) is given by pRs in (9). Consider an orbit backwards in time with initial
point in the right straight separation line above the invariant manifold µRs and below the
line y = x, that is, p−1 = (xR0 , y

R
0 +δ)T , with δ > 0 and small enough. At each time t, the

distance between that orbit (backwards, localized in the right zone), and the invariant
manifold µRs is given by

dR(t;η, δ) = αR exp(−λRs t)vRs + βR exp(−λRf t)vRf , (40)

where

vRs = pRs − qR =

(
ε

1 + b
− a
)(
−1,

ε

λRs

)T
and vRf = (−λRf , ε)T

are the eigenvectors corresponding to the eigenvalues λRs , λ
R
f , and qR is the virtual
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equilibrium point of the right zone. By imposing dR(0;η, δ) = (0, δ)T , we obtain

αR =
βRλRf
ε

1+b − a
, βR =

δλRs
ε(λRs − λRf )

.

In functions (39) and (40), the contribution of the addend corresponding to the slow
eigenvector can be neglected in comparison to that of the fast one. Moreover, as λRf = −λLf
and λRs = −λRf , we conclude that βL = βR. Thus, we can conclude that the stability is
determined by the function

s(η) = exp(λLf (TL − TR)), (41)

where TL is the time that the orbit on the left slow manifold takes to arrive from the
separation line of the left zone to a height h, and TR is the time that the orbit on the
right slow manifold takes to arrive from a height h to the separation line of the right
zone. The limit cycle will be stable if s(η) < 1 and unstable if s(η) > 1. So, to know the
stability, we only have to find the sign of TL−TR. Despite the apparent symmetry of the
system, if b 6= 0, TL 6= TR in every case, because the distance from the corresponding
virtual equilibrium point to left and right boundaries is not equal (see Fig. 3). Times
TR and TL depend mainly on this distance. Consider b > 0. We know from Lemma 4.4
that the canard cycle exists for a ' π

4

√
εb > 0. Thus, the equilibrium point is located in

x > 0, closer to x = ε/(1 + b) and the orbit takes more time to arrive from h to the right
boundary than from the left boundary to h because of the presence of the equilibrium
point. That is, in this case TR > TL and

s(η) < exp(−c/ε), where c is a positive constant independent of ε. (42)

Then, the orbit is stable. Analogous reasoning allow us to conclude that the orbit is
unstable for b < 0. Note that the passage through the middle zone does not play any
role because of the estimate of the passage time given by τ∗ in (8).

We compute explicitly the stability function s(η) to confirm that the above intuitive
reasoning is true. The explicit expressions of TL and TR are given by

TL =
1

λLs
log

λLs (h+ ε+ a)

ε
(

ε
1−b + a

)
 (43)

and

TR =
1

λLs
log

λLs (h+ ε− a)

ε
(

ε
1+b − a

)
 . (44)

It is easy to see that

s(η) =

(h+ ε+ a)
(

ε
1+b − a

)
(h+ ε− a)

(
ε

1−b + a
)
λL

f /λ
L
s

. (45)
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Then we remark that

λLf /λ
L
s ' 1/ε. (46)

For the case of the existence of the canard cycle, we know from Lemma 4.4 that a ' π
4

√
εb,

or, if we consider b = 2b̂
√
ε,

a ' π

2
εb̂. (47)

By construction of the system, we have that a ∈ (−ε/(1 − b), ε/(b + 1)), hence the

following condition for b̂ is satisfied

−2/π < b̂ < 2/π. (48)

Considering approximation (47), we can write that

h+ ε+ a

h+ ε− a ' 1 +
πεb̂

h
:= 1/d(b̂) (49)

and that

ε
1+b − a
ε

1−b + a
' 1− πb̂

2

1 + πb̂
2

:= n(b̂). (50)

From expressions (46), (49) and (50), we conclude that (51) can be approximated by

s(η) '
(
n(b̂)

d(b̂)

)1/ε

. (51)

Taking into account (48), it comes that n(b̂), d(b̂) > 0. Moreover, 1/d(b̂) = 1 +O(ε) and

when b̂ > 0, n(b̂) < c0 < 1 for some constant c0, so that s(η) satisfies estimate (42) and

therefore the orbit is stable. Finally, when b̂ < 0, n(b̂) > c1 > 1 for some constant c1, so
s(η) is exponentially large and the orbit is unstable.

6. Conclusions and perspectives

In this paper, we have fully analyzed the generation mechanism giving rise to canard
cycles in planar slow-fast PWL systems with three zones, that is, a connection between
attracting and repelling slow manifolds and its break-up upon exponentially small pa-
rameter variation. We provide the first treatment of this problem from the viewpoint of
Geometric Singular Perturbation Theory (GSPT), which allows a complete comparison
with the smooth case and sets the basis for revisiting and hopefully simplifying GSPT
by using the PWL framework.

We have proven the existence and stability of canard cycles due to the break-up of this
connection and in a two-parameter unfolding. We focus on such cycles sufficiently close
to the transition where they are created, that is, we only analyze canards without head.
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A short-term objective is to add a third parameter (which we believe can control the
slope of one branch of the critical manifold), in order to allow for the coexistence of a
stable and an unstable canard cycle that would coalesce in a saddle-node bifurcation of
limit cycles.

A second short-term objective is to analyze the global aspect of PWL canard cycles by
adding a fourth zone mimicking the upper fold of the Van der Pol cubic critical manifold.
It is known that this situation allows for PWL canards with head [36]. We plan to study
the existence of such canard cycles using similar tools as in the present work.

A longer-term objective is to extend our results to 3D slow-fast PWL systems displaying
canard phenomena. There are two main families of such systems, depending on whether
the third variable is slow or fast; the overarching goal is to study complex oscillations
due to multiple time scales in the framework of PWL systems. In the former case, we
aim to study slow passage through canard explosion in a PWL context, as a fundamental
step to prove the existence and patterns of Mixed-Mode Oscillations (MMOs) in PWL
vector fields, following the construction provided in [11]. In the latter case, we plan to
investigate spike-adding canard explosion [10] in the PWL framework.
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