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Estimation of Synaptic Conductance in the Spiking Regime for the McKean
Neuron Model∗
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Abstract. In this work, we aim at giving a first proof of concept to address the estimation of synaptic
conductances when a neuron is spiking, a complex inverse nonlinear problem which is an open
challenge in neuroscience. Our approach is based on a simplified model of neuronal activity, namely,
a piecewise linear version of the FitzHugh–Nagumo model. This simplified model allows precise
knowledge of the nonlinear f-I curve by using standard techniques of nonsmooth dynamical systems.
In the regular firing regime of the neuron model, we obtain an approximation of the period which,
in addition, improves previous approximations given in the literature to date. By knowing both this
expression of the period and the current applied to the neuron, and then solving an inverse problem
with a unique solution, we are able to estimate the steady synaptic conductance of the cell’s oscil-
latory activity. Moreover, the method gives also good estimations when the synaptic conductance
varies slowly in time.
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1. Introduction. Estimating the synaptic conductances impinging on a single neuron
directly from its membrane potential is one of the open problems that needs to be solved
in order to understand the flow of information in the brain. The ultimate goal is providing
useful methods to deal with experimental data and give trustable estimations of excitatory
and inhibitory currents arriving to a neuron. These input estimations constitute an important
piece of information to understand the organization of activity in the populations of efferent
neurons. In particular, they can shed light on the excitation versus inhibition balance through
time in the subjacent network (see the introduction of [4] and [26] for specific applications).

Broadly speaking, there are three main obstacles to overcome in order to provide effective
solutions to this inverse problem. On one hand, one needs a mathematical model of the target
neuron in which the synaptic conductances are well identified (generally, as parameters of the
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system). Aiming at giving methods as general as possible, the variety of neuron types does
not advise the use of very specific models, but rather minimal models that capture essential
features of neuronal dynamics. This idea has been extensively used in the existing literature
(see [5], [2], [27], [22], [20], [3], [4], among others) assuming that data is following some
underlying linear process. Normally, this assumption involves a complementary treatment of
the noise present in the data, which is the second main obstacle. Some strategies consists
of filtering the data before fitting them to the “minimal model” (see [2], [5], among others),
and some use stochastic linear processes in order to obtain the estimations (see [22], [20],
[19], [4], among others). Other approaches use more sophisticated filtering techniques (see
[15], [9], [6], among others). In all these stochastic approaches, linear regression methods
and maximum likelihood estimators are in order at some point of the procedure. Despite
some excellent estimations obtained in particular circumstances, especially in purely leaky
subthreshold regimes, misestimations derived from the use of linear models have also been
reported (see [5], [13], [26]). Therefore, a third challenge, related to the type of minimal
models to use, comes into play. The problem is how to deal with the inverse estimation
problem when the underlying (deterministic) model is no longer linear. A partial solution for
subthreshold regimes with active (nonlinearly behaving) ionic currents has been given in [26],
but no solution for spiking neurons have yet been proposed.

In this work, we provide a first proof of concept to perform estimations of synaptic con-
ductances during spiking activity. We approach this problem by considering the neuronal
firing rate, f , as a function of the input current, I, i.e., the spike frequency f versus the input
strength current I function (known as the f -I curve). We have chosen the McKean model, a
simplified piecewise linear model of neuronal activity with regular firing, that can be derived
from the FitzHugh–Nagumo model (see [17] and [7]). The piecewise linearity of the vector
field allows very precise knowledge of the nonlinear f -I curve by means of standard techniques
of nonsmooth dynamical systems. In the standard McKean model, we put special emphasis
on the synaptic current, Isyn(v). We consider the piecewise linear differential system{

Cv̇ = f(v)− w − w0 + Itotal,
ẇ = v − γw − v0,

(1)

where Itotal = I − Isyn(v), Isyn(v) = gsyn(v − vsyn) and f(v) is the piecewise linear caricature
of the cubic FitzHugh–Nagumo function given by

f(v) =


−v, v < a/2,
v − a, a/2 ≤ v ≤ (1 + a)/2,
1− v, v > (1 + a)/2.

Physiologically, the variables of the model are considered to be v, which stands for the mem-
brane potential, and w, which represents the recovery property of the neuron. The parameters
a, w0, v0, and γ > 0 may be considered as conductance properties and combinations of mem-
brane reversal potentials (see [7]). The function f(v) determines the outward membrane
current at v. In the total input current Itotal we distinguish two sources: an eventual injected
current I, which will be taken as constant throughout the paper, and the synaptic input
Isyn(v). In the the synaptic input term, vsyn symbolizes the reversal potential and gsyn > 0
is the synaptic conductance. Finally, C is related to the cell membrane capacitance and is
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assumed to be small and bounded, that is, 0 < C � 0.1. In the numerical simulations, vsyn
is considered to be the half point between a/2 and (1 + a)/2 to mimic an excitatory synapse.

At a first instance, the synaptic conductance, gsyn, is considered to be constant, a fact that
can be understood as the synaptic current Isyn(v) being a representation of the mean field of
the synaptic inputs. Moreover, since C is assumed to be small, the variables evolve with very
different velocities and so system (1) can be considered a slow-fast dynamical system, where
the variable v is the fast one and the variable w is the slow one.

As has been reported in previous studies (see [1] and [25]), system (1) presents different
neuronal behaviors depending on the total amount of constant current that the neuron is re-
ceiving. In particular, for gsyn = 0, the authors show that there exist two boundary values I01
and I02 such that if Itotal ≤ I01 , the system presents low activity and the membrane potential
tends to a silent state, that is, variable v tends to an equilibrium state with low value. More-
over, when I01 < Itotal < I02 , the system exhibits a unique isolated periodic orbit, i.e., a limit
cycle, and so the neuron presents an oscillatory behavior corresponding to a regular firing.
Otherwise, if Itotal ≥ I02 , the neuron tends to a steady high activity, that is, the variable v
tends to an equilibrium state with high value, corresponding to a nerve block.

In the present paper, we show that this scenario also persists for Itotal = I − Isyn(v) =
I − gsyn(v − vsyn) with gsyn ≥ 0. Since we are interested in the estimation of conductance
gsyn in spiking regimes, we will focus on the region of the parameter space where the model
presents a limit cycle crossing the two switching manifolds v = a/2 and v = (1+a)/2. Several
approximations of the period T of the limit cycle, exhibited by the McKean model (1) with
gsyn = 0, have been recently studied. In [8], the period T is computed numerically for different
constant inputs Itotal. In other works, such as [1], [7], and [24], the approximation of T has
been carried out by considering the singular limit (C = 0) of the limit cycle, which consists of
segments of orbits from both subsystems, the slow and the fast one. The approximation is then
obtained from the total amount of flight times on the slow manifold. We note that this value
coincides with the constant term of the power series expansion in C of the period T . More
recently, in [10], the authors provide an approximate expression of the period T by taking
advantage of the slow invariant manifolds for 0 < C � 1. In this case, T is approximated
by computing the flight time of the limit cycle in each lateral region, i.e., in v < a/2 and
v > (1 + a)/2, by reducing the flow to the slow manifold, and supposing that the flight time
in the central band, i.e., in a/2 < v < (1 + a)/2, is negligible.

In this paper, we compute an approximated expression, T̂ , of the period function, T ,
which provides two new contributions to the existing literature. The first one is that instead
of approximating the flight time in the lateral regions by reducing the flow to the slow manifold,
we compute the exact value of this flight time. The second one is that we consider the flight
time in the central region to be nonnegligible. As we will show in subsection 3.2, numerical
evidence supports the goodness of the approximated period function in the sense that the
absolute error, |T − T̂ |, is O(Cα), with α ≈ 0.88 < 1.

This new approximation of the period function denoted by T̂ depends on the parameters
of the model, and, in particular, on the synaptic conductance gsyn and the applied current I,
i.e., T̂ (gsyn, I). As we prove in this article, the dependence of T̂ on the synaptic conductance,
gsyn, is nonlinear but seems to be monotonic for the range of input current values for which T̂
has sense, that is, for the input currents that drive the neuron to regularly spike. Hence, as a
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consequence of the monotonicity, by knowing T̂ and the applied current I (i.e., knowing the
f − I curve), one would be able to compute gsyn by solving numerically a nonlinear equation
having a unique solution and so estimate the steady synaptic conductance of the neuron,
which is the goal of this paper.

We would like to note that even though some studies consider the synaptic conductances
as a constant input, in real experiments synaptic conductances change over time, thus causing
nonregular spiking. Indeed, we have a nonautonomous system which may have a very com-
plicated dynamics. If the changes in conductances are relatively slow, then we may assume
to be “riding” on a periodic orbit with a constant conductance during a certain time win-
dow. This fact suggests that each interspike interval, which corresponds to the time between
two consecutive spikes, can be a good approximation of T for a specific constant value g̃syn
provided that gsyn(t) has a slow variation. Hence, for each interspike interval we estimate a
different steady conductance and so we obtain a time course estimation of g̃syn, say, ĝsyn(t);
see subsection 4.2.

Furthermore, when the rate of variation of gsyn(t) is close to that of V , the estimation
ĝsyn(t) can be improved by taking advantage of the splitting of T̂ into subperiods accounting
for the flight times in the lateral and the central regions; see subsection 4.3.

The above explained procedure and the results obtained in this article are distributed in the
following way. In section 2, we present the model and revise the main features of its qualitative
dynamics, namely, the existence and character of equilibrium points, and the conditions on the
parameters that ensure the existence of a limit cycle. In section 3, we present the expression
T̂ that we obtain as an approximation of the period T , showing numerical evidence that T̂ is
a monotonically decreasing function of the synaptic conductance gsyn. In section 4, we deal
with the estimation procedure, where we are able to infer, in subsection 4.2, a steady synaptic
conductance from the cell’s oscillatory activity; in subsection 4.1, we extend the results to a
more realistic case, where we present a proof of concept to estimate the full time course of the
conductance. The conclusions are presented in section 5.

2. Qualitative analysis of the model. Let us consider the modified McKean model given
by system (1). This system is a nonsymmetric continuous piecewise linear system that it is
defined in three different regions, where {(v, w) ∈ R2; v < a/2} is the left region, {(v, w) ∈
R2; v > (1 + a)/2} is the right region, and {(v, w) ∈ R2; a/2 ≤ v ≤ (1 + a)/2} is the central
(or middle) one. Throughout the paper we will use the symbols L, R, and M to refer to these
regions, respectively.

Observe that system (1) is not globally differentiable but piecewise differentiable. More-
over, since parameter C is assumed to be small, system (1) is endowed with a slow-fast
dynamics, being the membrane potential, v, the fast variable; meanwhile the auxiliary vari-
able, w, is the slow one. Notice that the dynamics of system (1) is parameterized by the slow
time.

The function f(v) depends piecewise linearly on the parameter v, with different slopes
according to the three different zones defined by the model. Therefore the v-nullcline is a
piecewise linear function, whereas the w-nullcline is a straight line; see Figure 1.

On the other hand, the determinant and the trace of the model vary across the different
regions. In the central region, the determinant is given by dM = (γ(gsyn− 1) + 1)/C, whereas
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Figure 1. Representation of the v- and w-nullclines. The black dotted trace is the v-nullcline of system (1)
and the black dashed trace is the w-nullcline. Filled circles describe the switching points, from one region to
the other. The expression of the slopes of the nullclines as well as the coordinates of the switching points are
also given in the figure.

the trace is tM = −((gsyn − 1)/C + γ). In the lateral regions, the determinants and traces
are dL = dR = (γ(1 + gsyn) + 1)/C and tL = tR = −((1 + gsyn)/C + γ), respectively, where
the subscript L stands for the left region and R for the right one. As a consequence, different
equilibrium points can coexist in the model and they can also be located in different regions.
These facts depend on the value of the external input I and the synaptic conductance gsyn,
as illustrated in Figure 2, where I1 and I2 are defined as

I1 =
(a

2
− vsyn

)
gsyn +

(γ + 1)a− 2v0 + 2γw0

2γ
,

I2 =

(
a+ 1

2
− vsyn

)
gsyn +

(γ + 1)a− 2v0 + 2γw0 − γ + 1

2γ
.

(2)

In fact, Ij ≡ Ij(gsyn; vsyn, γ, a, v0, w0), j = 1, 2, but we will omit these dependencies to simplify
the notation. Note that when gsyn < 1 − 1/γ, lines I = I1 and I = I2 are the subcritical
saddle-node-like bifurcations, where two equilibrium points annihilate each other after they
collide.

In the next proposition, we show necessary and sufficient conditions to ensure existence
and uniqueness of an equilibrium point of system (1) located in the central region or on either
of the two switching manifolds. We point out that, from the arguments used in the proof
of this proposition, the rest of the possible locations and configurations of equilibrium points
given in Figure 2 follow.

Proposition 2.1. Let us consider system (1) satisfying that gsyn > 1− 1/γ and I ∈ [I1, I2].
Then, this system has a unique equilibrium point and it is located

(a) in the interior of the central region if and only if I1 < I < I2;
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)

Figure 2. Location of the equilibrium points. According to expressions in (2), the solid blue line represents
I = I2, whereas the solid red line represents I = I1. The dotted line is gsyn = 1−1/γ. Each picture in the figure
represents the three different regions of system (1) (left, central, and right) separated by vertical segments. The
solid piecewise line corresponds to the v-nullcline, whereas the dashed line stands for the w-nullcline. The dots
on their intersection are the equilibrium points. The different locations and configurations of equilibria follow
from Proposition 2.1 and from the arguments used in its proof.

(b) on the switching manifold v = a/2 if and only if I = I1;
(c) on the switching manifold v = (1 + a)/2 if and only if I = I2.

Proof. The equilibrium points of system (1) are given by the solutions of

−f(v) +

(
gsyn +

1

γ

)
v =

v0
γ
− w0 + gsynvsyn + I and w =

v − v0
γ

,(3)

where f(v) takes its expression according to the corresponding region. Therefore, we proceed
by considering each of the regions separately.

Let us first consider the left region. Since f(v) = −v, gsyn ≥ 0, and γ > 0, the unique
solution of system (3) is given by the point pL = (vL, wL), where

vL =
γ(I − w0 + gsynvsys) + v0

1 + γ(1 + gsyn)
and wL =

I − w0 + gsyn(vsyn − v0)− v0
1 + γ(1 + gsyn)

.

Therefore, by imposing that vL < a/2, it follows that pL is an equilibrium point in this region
if and only if I < I1.

In the central region, where f(v) = v − a, the unique solution of system (3) is the point
pM = (vM , wM ) given by

vM =
γ(I − w0 + gsynvsyn − a) + v0

1− γ(1− gsyn)
and wM =

I − w0 + gsyn(vsyn − v0) + v0 − a
1− γ(1− gsyn)

.

Hence, by forcing vM to lie in the interval [a/2, (a+ 1)/2], pM is an equilibrium point if and
only if either of the pair of inequalities
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gsyn > 1− 1

γ
and I1 ≤ I ≤ I2 or gsyn < 1− 1

γ
and I2 ≤ I ≤ I1

are held. However, notice that the first component of the equilibrium point is exactly v = a/2
when I = I1, and so the equilibrium point is located in the left switching manifold. Similarly,
when I = I2, the equilibrium point is located in the right switching manifold. Otherwise,
i.e., when I1 < I < I2, the equilibrium point stays inside the central region.

We remark that in the case where gsyn = 1 − 1/γ, if I = I1 = I2 all points along the
central part of the v-nullcline are equilibrium points. This fact is caused by the slopes of v
and w nullclines being the same.

Finally, in the right region, i.e., when f(v) = 1 − v, the unique solution of system (3) is
the point pR = (vR, wR) given by

vR =
γ(I − w0 + gsynvsyn + 1) + v0

1 + γ(1 + gsyn)
and wR =

I − w0 + gsyn(vsyn − v0)− v0 + 1

1 + γ(1 + gsyn)
.

Since gsyn ≥ 0 and γ > 0, by imposing that vR > (1+a)/2, an equilibrium point in this region
exists if and only if I > I2.

Hence, we only have an equilibrium point located in the central region when both condi-
tions gsyn > 1− 1/γ and I1 ≤ I ≤ I2 hold, proving the proposition.

Remark 2.2. By Proposition 2.1, when gsyn > 1−1/γ and I1 < I < I2 system (1) has only
one equilibrium point which lies in the interior of the central region. Let us call such point
pM = (pv,M , pw,M ). When each linear system which is part of the vector field is considered to
be defined on the full plane, then two more zeros appear: one from the system described in the
left zone, pL = (pv,L, pw,L), and another from the system in the right zone, pR = (pv,R, pw,R).
Under these assumptions, these two points are located in the central region and, even thinking
that they have influence on the global dynamics, they are not equilibrium points of system
(1). These points are called virtual equilibrium points. Finally, note that when I = I1 or
I = I2, pM coincides with pL or pR, respectively.

Even though the full model is not linear, its behavior is locally governed by the eigenvalues
associated with each one of the linear subsystems. Note that these eigenvalues vary across
the three different zones (left, central, and right). In each region, there exist two different
eigenvalues: one of O(C0), which is responsible for the slow dynamics and denoted by the
subscript s, and another one of O(C−1), which is responsible for the fast dynamics and is
denoted by the subscript q. These eigenvalues are given by

λs,L = λs,R = − 1

2C

(
1 + gsyn + Cγ −

√
(1 + gsyn − Cγ)2 − 4C

)
,

λq,L = λq,R = − 1

2C

(
1 + gsyn + Cγ +

√
(1 + gsyn − Cγ)2 − 4C

)
,

λs,M =
1

2C

(
1− gsyn − Cγ −

√
(gsyn − 1− Cγ)2 − 4C

)
,

λq,M =
1

2C

(
1− gsyn − Cγ +

√
(gsyn − 1− Cγ)2 − 4C

)
.
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They may correspond to either focus or node equilibrium points, depending on the values of
the parameters gsyn, γ, and C. However, for sufficiently small values of C, one can guarantee
that all equilibrium points are nodes since all the discriminants are positive when C = 0. In
fact, all the equilibrium points are nodes if and only if C ≤ C∗, where

C∗ = min

{
2 + γ(gsyn + 1)− 2

√
1 + γ(gsyn + 1)

γ2
,
2 + γ(gsyn − 1)− 2

√
1 + γ(gsyn − 1)

γ2

}
.

In this case, we call vi,j = (λi,j+γ, 1) the eigenvector associated with the eigenvalue λi,j , where
i ∈ {s, q} and j ∈ {L,R,M}. Notice that the slow motion takes place along manifolds that are
defined by the eigenvector associated with the slow eigenvalue. Since the eigenvector depends
on the region, we obtain three different slow manifolds. We refer to each slow manifold as Sj ,
where j ∈ {L,R,M}, which are given by

SL =

{
(v, w); v <

a

2
and w = pw,L +

v − pv,L
λs,L + γ

}
,

SR =

{
(v, w); v >

1 + a

2
and w = pw,R +

v − pv,R
λs,R + γ

}
,

SM =

{
(v, w);

a

2
≤ v ≤ 1 + a

2
and w = pw,M +

v − pv,M
λs,M + γ

}
,

(4)

where pv,j and pw,j are the first and second components, respectively, of pj (see Remark 2.2).
Since the piecewise differential system (1) is locally linear, it can be analytically solved at

each region separately, being the local solutions(
v(t)
w(t)

)
= c1,ie

λs,itvs,i + c2,ie
λq,itvq,i + pi,(5)

where i represents either L, M , or R depending on the region being left, central, or right,
respectively, and

c1,i =
v(0)− pv,i − (λq,i + γ)(w(0)− pw,i)

λs,i − λq,i
, c2,i = w(0)− c1,i − pw,i.(6)

Notice that (5) only represents a local expression of the solution of system (1). As long as
the orbit, given by a fixed initial condition, remains in one region, this orbit is given by the
expression of the solution of the system obtained in this particular region; however, if the
orbit crosses to another region, the orbit is given by the corresponding expression obtained in
this new region, which depends on the different eigenvalues and initial conditions. Since the
vector field defined by system (1) is globally nonlinear, system (1) may exhibit limit cycles
(see [16]). In the next proposition we give a sufficient condition so that system (1) can have
a limit cycle.

Proposition 2.3. Consider the following assumptions:

gsyn > 1− 1/γ, |gsyn + Cγ| < 1, and 0 < C ≤ C∗.
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Then,
(a) if I1 < I < I2, system (1) exhibits a unique limit cycle, this orbit crosses the two

switching manifolds v = a/2 and v = (a+ 1)/2, and it is stable;
(b) if I = I1 or I = I2, system (1) exhibits a homoclinic orbit to the equilibrium point pM ,

this orbit is stable from the exterior and delimits an open region which is foliated by
homoclinic orbits to pM .

Proof. Let us consider system (1) written in its Liénard form. To do that, we make two
different changes of variables. First, we switch to (v, u) through w = C(u+ γv) and, second,
we introduce (x, y), where x = 4v − 2a − 1 and Cy = 4Cu + Cγ(2a + 1) − 4I + 2a − 1 (see
section 2 in [16]). Then, moving the origin to the point (0, ((2a + 1 − yvsyn)gsyn + 4w0)/C),
the Liénard form of system (1) is given by{

ẋ = F (x)− y,
ẏ = G(x)− δ,

where δ = − 1
C (2a(γ + γgsyn + 1)− γ + γgsyn + 1− 4v0 + 4γ(w0 − I − gsynvsyn)),

F (x) =


tL(x+ 1)− tM , x < −1,
tMx, −1 ≤ x ≤ 1, and
tR(x− 1) + tM , x > 1,

G(x) =


dL(x+ 1)− dM , x < −1,
dMx, −1 ≤ x ≤ 1,
dR(x− 1) + dM , x > 1.

By Proposition 2.1, since gsyn > 1 − 1/γ and I1 < I < I2, only one equilibrium point
exists and it is located in the interior of the central region. Moreover, since gsyn > 1 − 1/γ
and |gsyn + Cγ| < 1, the parameters of the functions F (x) and G(x) satisfy that dM > 0,
−dM < δ < dM , dL, dR ≥ 0, tL, tR < 0, and tM > 0. Hence, the existence and uniqueness
of a limit cycle (isolated periodic orbit) surrounding the equilibrium point is guaranteed by
Theorem 1 in [16].

Finally, since 0 < C ≤ C∗ and tM > 0, the equilibrium point is a repelling node. Conse-
quently, the invariant lines defined by the eigenvectors force the limit cycle to cross the three
regions, which ends the proof of statement (a).

In order to prove statement (b), let us consider the case where I = I1. Then, let qL =
(vL, wL) and qR = (vR, wR) be the intersection points of the left and right slow manifolds (see
(4)) with the vertical lines v = a/2 and v = (1 + a)/2, respectively, and let q∗∗R = (v∗∗R , w

∗∗
R )

be the intersection point of the w-nullcline with the vertical line v = (1 + a)/2; see Figure 3.
In this case, the equilibrium point, pM (that exists and is unique from Proposition 2.1),

coincides with the virtual equilibrium point of the left region, pL. Since it is contained in
the intersection of SL and SM , which are respectively stable and unstable manifolds, the
equilibrium point is a saddle node and qL = pL. Moreover, taking into account that I = I1,

qL =

(
a

2
,
a− 2v0

2γ

)
, qR =

(
1 + a

2
, pw,R +

1

λs,R + γ

(
1 + a

2
− pv,R

))
, and

q∗∗R =

(
1 + a

2
,
1 + a− 2v0

2γ

)
.

Consider now the closed region delimited by the union of the line segments Li, i = 1 . . . 5,
defined as follows:
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(i) L1 denotes the line segment bounded by qL and the intersection point of SR with the
line w = wL, which we denote by q∗1,R;

(ii) L2 denotes the segment of SR that is bounded by q∗1,R and qR;
(iii) L3 denotes the vertical line segment bounded by qR and q∗∗R ;
(iv) L4 denotes the line segment bounded by q∗∗R and the intersection point of SL with the

line w = w∗∗R , which we denote by q∗1,L; and, finally,
(v) L5 denotes the segment of SL that is bounded by q∗1,L and qL.
Looking at the direction of the flow, one can see that the w-component of the flow in

L1 is given by ẇ = v − a/2, which is positive in the line segment under consideration, and
so the flow positively crosses L1. Similarly, the w-component of the flow on L4 is given by
ẇ = v − (1 + a)/2, which is negative in the line segment under consideration, and so the
flow positively crosses L4. On the other hand, segments L2 and L5 are contained in the slow
manifolds SR and SL, respectively; this fact implies that both line segments are invariant
under the flow. Finally, notice that the flow positively crosses the line v = (1 + a)/2 if and
only if v̇ > 0, and so

w|v=(1+a)/2 > 1− 1 + a

2
− w0 + I − gsyn

(
1 + a

2
− vsyn

)
.

Straightforward calculations show that, for a sufficiently small C, both wR and w∗∗R are greater
that w|v=(1+a)/2, and so the flow crosses the line segment L3 positively, showing that the closed
region obtained by these five segments is a compact set invariant under the flow of system
(1); see Figure 3 (left) for a representation of both the invariant region and the direction of
the flow. By the Poincaré–Bendixson theorem (see, for instance, [14, Theorem 4.1]), if there
exists a limit cycle in the entering compact set, then there must exist an equilibrium point in
its interior. However, the unique equilibrium point lies on the boundary of the closed region.
Therefore, there cannot be limit cycles in the interior of the compact set. Consequently, again
by the Poincaré–Bendixson theorem, the unique α- and ω-limit sets are on the boundary of

I = I1 I = I2

qL q∗1,R

qR

q∗∗Rq∗1,L

L1

L2

L3

L4

L5

qL
q∗∗L q∗2,R

qRq∗2,L

Figure 3. Invariant region and direction of the flow. Representation of the invariant regions and the
direction of the flow when I = I1 (left) and I = I2 (right). The dashed black lines represent the three slow
manifolds, whereas the dotted black line is the w-nullcline. Vertical dotted gray lines represent the two switching
manifolds, v = a/2 (left line in each subplot) and v = (1 + a)/2 (right line in each subplot). The solid red line
represents the boundary of each invariant region and the arrows give us information about the direction of the
flow. See Proposition 2.3(b) for more details.
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I

C

I1 I2

0

C∗

Figure 4. Bifurcation diagram. Representation of the bifurcation diagram with the phase portraits of the
limit cycles for different values of C and I under conditions gsyn > 1 − 1/γ and |gsyn + Cγ| < 1. The phase
portraits are obtained with the following parameter values: a = 0.25, v0 = 0, γ = 0.5, gsyn = 0.2, w0 = 0, and
vsyn = 1/4 + a/2. The red dotted lines stand for the slow manifolds, whereas the dashed black lines stand for
the v-nullcline.

the closed region. Hence, there exists a continuum of homoclinic orbits from the equilibrium
point to itself, with the biggest homoclinic orbit stable.

Similar arguments can be applied to prove the result when I = I2, where in this case
qR = pR. In Figure 3 (right), we depict a representation of the invariant region and the
directions of the flow in this case.

Remark 2.4. Note that under suitable conditions

gsyn > 1− 1/γ, |gsyn + Cγ| < 1, I1 < I < I2, and 0 < C ≤ C∗,(H)

the regular firing behavior persists for gsyn ≥ 0.

Figure 4 represents the different phase portraits obtained when we change the value of
the capacitance (when C = 0 and 0 < C ≤ C∗) and also the value of the applied current
(when I = I1, I1 < I < I2, and I = I2). Notice that these configurations are obtained from
Proposition 2.3.

3. Quantitative analysis of the limit cycle period. As mentioned in the introduction,
related works such as [24] and [10], among others, make approximations of the period T of
the limit cycle in system (1), where gsyn is considered to be identically zero. In this section
we present a more accurate approximation of T , which also takes into account the case when
gsyn is not identically zero. This improvement is, basically, obtained by considering the flight
time in the central region and using a better approximation of the flight time in the lateral
regions.

From now on, let us assume that the hypothesis (H) is satisfied. Hence, by Proposition
2.3(a), the considered model given by system (1) has a unique limit cycle that intercepts the
three different regions, and so, the period of the limit cycle can be split into four parts: the
first one corresponds to the time that the orbit is contained in the left region; the second
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v = a/2 v = (1 + a)/2

TMd

TMu

TL TR

q̃L

qL

pL

q̄L

q̃R

qR

pR

q̄R

pM

qM,L

qM,R

v

w

Figure 5. Key points when C > 0. Representation of all the elements needed to find the expression of
the period. The vertical dashed black lines represent the boundaries of the different regions and the rest of the
dashed black lines illustrate TL, TMd, TR, and TMu. The dotted lines represent the critical manifold, whereas
the red lines represent the three slow manifolds. These manifolds have been artificially prolonged in gray dotted
lines and gray solid lines, respectively, for a better visualization of the virtual singular points. The green line
stands for the w-nullcline. See the proof of Proposition 3.1 for more details.

part is the time taken by the orbit to cross the central zone from left to right following a
counterclockwise movement; the third is the subperiod that the orbit lies in the right region;
and, finally, the last part corresponds to the time taken by the orbit to cross the central part
from right to left (see Figure 5). The total period, T , is then the sum of these four subperiods.

In the singular limit, that is, when C = 0, the limit cycle no longer exists. In fact, when
C tends to zero, the limit cycle orbit tends to a limit set composed by two line segments on
the critical manifold (slow subsystem) plus two more line segments on the stratified flow (fast
subsystem); see Figure 4. We refer the reader to [21] for an overview on piecewise slow-fast
dynamics terminology.

Comparing the flight time on the different segments, the one corresponding to the two
line segments of the stratified flow can be considered zero with respect to the flight time on
the two line segments of the critical manifold. Hence, we consider the flight time on the two
line segments of the critical manifold, T0, as the limit of T when C tends to zero.

In the following subsections, we first provide an analytical expression approximating the
period and then we computationally check the goodness of such approximation.

3.1. An approximation of the period of the limit cycle. In the following proposition we
give an approximation, T̂ , of the total period. We also show that the singular limit of this
expression results to be T0.

Proposition 3.1. Given system (1) under hypothesis (H),
(a) if C = 0, the flight time on the two line segments of the critical manifold is T0 =

T0,L + T0,R such that
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T0,L = B0 ln

(
γ(I − I1)

γ(I − I1) +K0

)
and T0,R = B0 ln

(
γ(I − I2)

γ(I − I2)−K0

)
,(7)

B0 = − 1 + gsyn
(1 + γ + γgsyn)

, K0 =
(1− gsyn)(1 + γ + γgsyn)

2(1 + gsyn)
;

(b) for a sufficiently small C > 0, the period of the unique limit cycle orbit of the system
can be analytically approximated by T̂ = TL + TMu + TMd + TR, where

TL =
1

λs,L
ln

(∣∣∣∣ γ(I − I1)
γ(I − I1)−Kl

∣∣∣∣) , TMd =
1

λq,M
ln

(∣∣∣∣ γ(I − I2) +Km

γ(I − I2) +Km,d

∣∣∣∣) ,
TR =

1

λs,L
ln

(∣∣∣∣ γ(I − I2)
γ(I − I2) +Kl

∣∣∣∣) , TMu =
1

λq,M
ln

(∣∣∣∣ γ(I − I1) +Km

γ(I − I1) +Km,u

∣∣∣∣) ,
(8)

where

Kl =
γ + λq,L

2(λq,L − λs,L)
(gsynγ + γ + 2λs,L + 1),

Km =
(γ + λs,M )(gsynγ − γ + 1) ((gsynγ + 1)(λs,L − λq,M )− γ(λs,L + λq,M )− 2λs,Lλq,M )

2(γ + λq,M ) ((gsynγ + 1)(λs,L − λs,M )− γ(λs,L + λs,M )− 2λs,Lλs,M )
,

Km,d =
(λq,M − λs,M )(γ + λq,M )(gsynγ − γ + 1)(gsynγ + γ + 2λs,L + 1)

2(γ + λq,M ) ((gsynγ + 1)(λs,L − λs,M )− γ(λs,L + λs,M )− 2λs,Lλs,M )
,

Km,u =
(γ + λq,M )(gsynγ − γ + 1) ((gsynγ + 1)(λs,L − λs,M )− γ(λs,L + λs,M )− 2λs,Lλs,M )

2(γ + λq,M ) ((gsynγ + 1)(λs,L − λs,M )− γ(λs,L + λs,M )− 2λs,Lλs,M )
.

Proof. Let us consider first the singular case when C = 0. In this case, since the left
term of the first equation of system (1) vanishes, v can be isolated and replaced in the second
equation of system (1), obtaining the following nonautonomous linear ordinary differential
equations:

ẇ = −(1 + γ)w − w0 − v0 + I − Isyn if v < a/2;
ẇ = −(1 + γ)w − w0 − v0 + I − Isyn + 1 if v > (1 + a)/2.

(9)

From this system, the flight time on the two line segments of the critical manifold can be
analytically obtained by integrating the ẇ equation at each lateral region separately. From
the first differential equation in (9), which corresponds to the left region, integrating from t = 0
to t = T0,L we calculate the left flight time T0,L, and, from the second differential equation,
which corresponds to the right region, integrating from t = 0 to t = T0,R, we calculate the
right flight time T0,R. Then, we obtain the expressions (7), which proves statement (a).

Consider now the perturbed case, that is, when C > 0 and small enough. In this situation,
it is well-known that the limit cycle evolves exponentially close to the lateral slow manifolds
when they intersect the switching manifolds; see [11]. The intersection point with the left
(resp., right) switching manifold is called qL (resp., qR); see Figure 5. Therefore, different
techniques from the ones used when C = 0 are required to find an approximated period.
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Since the period can be split into four parts, we can approximate them separately. Let
us first approximate the central subperiods, TMd and TMu, defined as the bottom and upper
subperiods, respectively. Let qM,L and qM,R be the intersection points of the central slow
manifold with v = a/2 and v = (1 + a)/2, respectively (see Figure 5 for a representation of
these points).

Since the distance between the slow and critical manifolds of system (1) is of O(C) (see
[21]), the distance between qL and qM,L is also of O(C). Moreover, the distance between qR
and qM,R is also of O(C). In fact, notice that qL (resp., qR) tends to qM,L (resp., qM,R) when
C tends to zero. The limit cycle follows the left slow manifold very close to it and crosses
from the left region to the central one at some point between qL and qM,L, exponentially
close to qL. Similarly, the orbit moves very close to the right slow manifold and crosses from
the right region to the central one at some point between qR and qM,R, also exponentially
close to qL (see Figure 4). Hence, since C is close to 0, one can assume that the integral curve
through qL, which is contained in the central region, will remain in a neighborhood of the
limit cycle, and similarly for the integral curve through qR. Therefore, we consider qL and
qR as an approximation of two points where the limit cycle passes through.

Then, consider the central solution of the system, which is given in (5) when i = M , with
qL and qR as initial conditions. Since the fast eigenvalue λq,M is O(C−1), whereas the slow
eigenvalue λs,M is O(C0) and C is sufficiently small, one can suppose that λs,M = 0 and,
consequently, find an expression of the subperiods TMd and TMu. Indeed, under the previous
assumptions on the initial conditions, the subperiod TMd corresponds to the piece of orbit
that begins at qL and ends on the boundary v = (1 + a)/2 at a point that we call q̃R. By
imposing that v(t) = (1 + a)/2 and λs,i = 0 in the first component of (5) when i = M , the
subperiod TMd is the result of isolating the time t. That is,

TMd =
1

λq,M
ln

(∣∣∣∣ γ(I − I2) +Km

γ(I − I2) +Km,d

∣∣∣∣) ,
where Km and Km,d are given in the statement of this proposition.

Similarly, the subperiod TMu corresponds to the piece of orbit that begins at qR and ends
on the boundary v = a/2 at a point that we call q̃L. Therefore, following the same procedure
as for TMd, we obtain that

TMu =
1

λq,M
ln

(∣∣∣∣ γ(I − I1) +Km

γ(I − I1) +Km,u

∣∣∣∣) ,
where Km,u is described in the statement of this proposition.

Notice that both points q̃R and q̃L can be analytically computed by using the second
coordinate of (5), since TMd and TMu are known, and the component v of q̃R and q̃L is
v = (1+a)/2 and v = a/2, respectively. Then, the approximated period on the lateral regions
will be the necessary time to travel from q̃L to qL for the left subperiod, TL, and the necessary
time to travel from q̃R to qR for the right subperiod, TR.

Let us consider the coordinate system centered at the virtual equilibrium point pL and
generated by the left eigenvectors vs,L and vq,L. In this coordinate system q̃L = pL+ c̄1vs,L+
c̄2vq,L and qL = pL + c1vs,L. Let q̄L = pL + c̄1vs,L be the projection of q̃L on the slow
manifold along the direction given by the fast eigenvector vq,L.
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The time TL is computed as the time spent by the limit cycle to go from q̄L to qL. See
Figure 5 for a representation. Then, by isolating t in expression

etλs,L c̄1‖vs,L‖ = c1‖vs,L‖,

we obtain

TL =
1

λs,L
ln
c1
c̄1
.

The expressions of c1 and c̄1 can be easily obtained from expression (6).
The expression of TR can be similarly computed by considering the expression of the

points qR and q̄R in the coordinate system centered at the virtual equilibrium point pR and
generated by the right eigenvectors vs,R and vq,R.

Therefore, an expression approximating the period of the limit cycle in system (1) is
T̂ = TL + TMd + TR + TMu, thus proving statement (b).

Remark 3.2. Note that since q̄L is the projection of q̃L on the slow manifold along the
direction given by the fast eigenvector vq,L and system (1) is linear in the left region, the
subperiod TL is the flight time between q̃L and qL. Similarly, the subperiod TR is the flight
time between q̃R and qR.

Remark 3.3. When C tends to 0, TL −→ T0,L, TMd −→ 0, TR −→ T0,R, and TMu −→ 0.

Therefore, T̂ −→ T0. Moreover, for both C = 0 and C > 0, the left subperiod tends to infinity
when I tends to I1. This limit agrees with the fact that, when I = I1, the equilibrium point
lies on the intersection of the central slow manifold with the vertical line v = a/2; therefore,
the orbit reaches the equilibrium point and spends infinite time to escape. Similar arguments
explain why the right subperiod tends to infinity when I tends to I2.

Remark 3.4. Notice that Kl, Km, Km,d, and Km,u in the expression T̂ of Proposition
3.1 have a nonlinear dependence on gsyn. Moreover, fixing all parameters in the model but
keeping the synaptic conductance, gsyn, the applied current, I, and the parameter related to
the capacitance of the neuron, C, as variables, the approximated period can be written as the
function

T̂ (C, I, gsyn) = TL(C, I, gsyn) + TMd(C, I, gsyn) + TR(C, I, gsyn) + TMu(C, I, gsyn).

3.2. Goodness of the approximated period function. As mentioned in the proof of
Proposition 3.1, in order to approximate the period, we have assumed that the points qL
and qR belong to the limit cycle, because they are exponentially close to the orbit. To see
the global effect that this assumption causes, and so the goodness of fit, in Figure 6 we show
the relative error of the approximated period function T̂ (C, I, gsyn), first, keeping constant
parameter gsyn (panel A); second, keeping constant capacitance C (panel B); and, finally,
keeping constant applied current I (panel C). The relative errors have been plotted, in all
panels, considering the numerical solution of the period, which has been computed using the
Newton–Raphson method in each region separately, as well as the actual one (see Appendix
B.1 for details on the routine). In panel A we can see how the relative error in the proposed
approximation function depends more significantly on the capacitance C than on the applied
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Figure 6. Goodness of fit of the periodic function T̂ (C, I, gsyn). Panel A shows the relative error of the
period for a fixed synaptic conductance gsyn = 0.2, panel B shows the relative error of the period when the
capacitance is fixed as C = 1e−4, and panel C shows the relative error of the period when the applied current is
fixed as I = (I01 + I02 )/2 such that I01 and I02 are, respectively, the value of I1 and I2 corresponding to gsyn = 0.
Relative errors are obtained by comparing the expression of T̂ in Proposition 3.1 with the integration time,
computed from the Poincaré map using the Newton–Raphson method. The rest of the parameters of the model
are fixed as a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and vsyn = 0.25 + a/2.

current I. On the other hand, in panel B, one can see that when parameter I varies, for a fixed
value of gsyn, the error is not qualitatively altered, but for larger values of gsyn, the relative
error significantly increases; see also panel C, where we can better appreciate the errors in
gsyn as C changes.

Observe that even though T̂ (C, I, gsyn) is defined for all values of C, gsyn, and I, com-
puting T̂ makes sense only under the hypothesis (H), that is, when I lies in (I1, I2) and
gsyn ∈ (1−1/γ, 1−Cγ). Later, Figure 8 shows the shape of the approximated period function
T̂ (C, I, gsyn) in the corresponding domain. As mentioned in Remark 3.3, the period substan-
tially increases when I is close to I2 and I1, tending to infinity. Moreover, the V -shaped
domain of the function T̂ (C, I, gsyn) is given by the linear dependence that I1 and I2 have on
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Figure 7. Asymptotic dependence of the absolute error with respect to C. Panel A shows the log(C) versus
log(|T − T̂ |) for 10 equally spaced values of gsyn, moving from 0.1 (bottom colored trace) to 0.7 (upper colored
trace). The black thick dashed trace stands for a line of slope 1, whereas the thin one stands for a line of slope
0.88. Panel B represents the error |T − T̂ | (red traces) and the error obtained after avoiding the fast motion
and reducing the flow to the slow manifold (blue traces) for the same different values of gsyn. In both panels,
the applied current is fixed as I = (I01 + I02 )/2 such that I01 and I02 are, respectively, the value of I1 and I2
corresponding to gsyn = 0. The rest of parameters of the model are fixed as a = 0.25, v0 = 0, w0 = 0, γ = 0.5,
and vsyn = 0.25 + a/2. The numerical period T has been obtained applying the Newton–Raphson method to the
Poincaré map associated with the periodic orbit.

gsyn. That is, as we decrease the value of gsyn, the value of I1 is greater, whereas the value of
I2 is smaller; consequently, the window where I can move decreases and causes the V -shaped
profile.

In Figure 7 we illustrate the asymptotic dependence of the absolute error with respect to
C, showing a good linear fit of log(|T − T̂ |) versus log(C). The slope of this linear fitting
provides the order of the absolute error in terms of C. In panel A we can observe, for different
values of gsyn, that all traces have an initial slope smaller than one (comparing colored lines
versus the black thick dashed line) and similar to 0.88 (comparing colored lines versus the
black thin dashed line). Hence, our estimation procedure gives an absolute error of O(Cα)
with α ≈ 0.88. In panel B, we compare the error |T − T̂ | with that obtained after avoiding the
fast motion and reducing the flow to the slow manifold. We can see that our method reduces
the absolute error for any value of gsyn.

Remark 3.5. In Figure 8 we can also see that T̂ (C, I, gsyn) seems to be monotonically
decreasing with respect to gsyn. Because of the multitude of parameters in the model, we have
not been able to give an analytical proof of the monotonicity of T̂ . However, computational
evidence is given; see Figure 8 and Appendix A. Note that, by assuming monotonicity, for a
given value T ∗ of the period, there exists a unique value g∗syn such that T̂ (C, I, g∗syn) = T ∗. In
order to avoid possible situations of losts of monotonicity, in the estimation procedure of gsyn
we have implemented a control to ensure, under some tolerance value, that the derivative of
T̂ never vanishes.
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Figure 8. Shape of the T̂ (C, I, gsyn) function. This figure shows the shape of the approximated period T̂
versus the applied current I and the synaptic conductance gsyn. The capacitance has been fixed as C = 1e− 4.
The rest of parameters of the model are fixed as a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and vsyn = 0.25 + a/2.

4. Estimation of the synaptic conductance. In this section we present a method to
estimate the steady synaptic conductance from the cell’s oscillatory activity. That is, assuming
that gsyn is constant and knowing the frequency of the spikes for a fixed and constant injected
current I, we want to estimate the synaptic current that the neuron is receiving. The procedure
will then be extended to estimate the time course of the nonsteady synaptic conductance.

4.1. Estimation of a steady synaptic conductance. Based on the evidence of the mono-
tonicity of T̂ (C, I, gsyn) with respect to gsyn (see Figure 8 and Appendix A), we assume that
there exists a one-to-one correspondence between T̂ and gsyn. Therefore, applying a specific
current, I∗, one can experimentally approximate the corresponding actual period T ∗ of the
membrane potential v, and so gsyn numerically. In other words, knowing the rest of the
parameters of the model, a unique possible synaptic conductance gsyn can be estimated by
solving the implicit equation

T̂ (C∗, I∗, gsyn) = T ∗.(10)

To solve equation (10), one has to take into account that the logarithmic part of the
analytical expression T̂ contains an absolute function and, since I1 and I2 depend on gsyn,
we could get up to three possible gsyn solutions for a fixed I. However, only one of the three
possible solutions for gsyn satisfies that I1 < I < I2. Then, this indetermination can be
removed by imposing the additional condition

gsyn > max
(
0, Ī1, Ī2

)
,(11)

where

Ī1 =
2γI − (γ + 1)a+ 2v0 − 2γw0

2γ(a2 − vsyn)
and Ī2 =

2γI − (γ + 1)a+ 2v0 − 2γw0 − γ + 1

2γ(a+1
2 − vsyn)

.

When we apply the estimation procedure (10)–(11) to obtain the estimated synaptic con-
ductance, ĝsyn, we identify two main sources of error: an error coming from the numerical
method used to solve the implicit equation and another error coming from the approxima-
tion of the period function, which is at most O(Cα) with α ≈ 0.88 (see subsection 3.2). To
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Figure 9. Goodness of fit of the steady synaptic conductance parameter. Panels A and B show the relative
error caused when we estimate the synaptic conductance. The different traces correspond to different values of
gsyn equally spaced from 0.1 to 0.3. Panel A represents the relative error versus the applied current for a fixed
value of C = 10−4, whereas panel B represents the relative error versus the membrane capacitance for a fixed
value of I = I1 + 10−3. Red points in panel A represent the values of I1 (left points) and I2 (right points) for
each gsyn. Panel C shows the relative error in absolute value for varying values of the membrane capacitance,
C, and the applied current, I, being the actual synaptic conductance gsyn = 0.2. The rest of parameters are
fixed as a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and vsyn = 0.25 + a/2.

visualize the impact of both error sources and so to test the goodness of the estimation pro-
cedure, we show the relative error of the estimated synaptic conductance ĝsyn with respect
to the actual value of gsyn, both using different values of applied currents (see Figure 9(A))
and using different values of the membrane capacitance (see Figure 9(B)). In these plots we
estimate different values of the synaptic conductance (from 0.1 to 0.3, equally spaced), each
one represented by a different color trace.

In Figure 9(A) we can see how the estimation of the conductance improves when the
applied current is close to I1 and I2. The error of ĝsyn takes its maximum at I = (I1 + I2)/2,
where the slope of T̂ (I) is minimal (in absolute value). On the other hand, in Figure 9(B) we
also observe that the relative error is smaller when the membrane capacitance, C, is smaller;
moreover, for small C one can appreciate that this error is notably less than O(Cα) with
α ≈ 0.88. Therefore, we can conclude that the best estimation is done for small values of C
and also for values of I close to I1 or I2. In Figure 9(C) we can better appreciate how the
error increases for large values of C and for values of I far from I1 and I2. This panel presents
the goodness of fit of the synaptic conductance when both parameters C and I change (in
this plot, the relative error is represented in absolute value).
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4.2. Generalization for nonconstant conductance’s traces: Interspike estimation. In
this section, we modify the previous methodology in order to estimate conductance’s traces
that slowly vary along time, that is, when gsyn = gsyn(t). Strictly speaking, this leads to a
nonautonomous differential system, and the system may not have a limit cycle as for constant
gsyn. However, for slow changes in the synaptic conductance, even if the limit cycle does not
persist, we may assume that the orbits of the system are close to an oscillatory behavior.
Given an interspike interval [t∗, t∗ + τ ], we propose to apply the associated procedure (10)–
(11), that is, solving T̂ (gsyn) = τ to obtain an estimated ĝsyn on [t∗, t∗ + τ ]. We summarize
this idea in the following procedure.

Method 4.1. Consider a voltage trace {v(t), t ∈ [0, Tmax]} obtained from the neuron model
(1) under an (unknown) synaptic input {gsyn(t), t ∈ [0, Tmax]} and a specific applied current
I∗ such that they induce spiking activity. We assume that v(t) reaches N+1 peaks (maxima of
the trace) and call {T (k)}Nk=1 the corresponding N interspike intervals. Then, the time course
of the synaptic conductance gsyn(t) can be estimated with the next steps:

1. For each T (k), k = 1, . . . , N , solve system (10)–(11) to estimate the corresponding

synaptic conductance value, ĝ
(k)
syn.

2. Assign at ĝ
(k)
syn the time t(k) corresponding to the (k+1)th peak to obtain a set of points

P := {(t(k), ĝ(k)syn)}Nk=1.

As a result of this procedure, we obtain a discrete series of ĝsyn values, which are finally
interpolated to obtain an approximation of the full time course of ĝsyn(t). In the forthcoming
examples, we have used cubic spline interpolation. Notice also that we arbitrarily set t(k)

as the last time in the corresponding interval; we have tested other choices (e.g., the middle
point) and no substantial changes have been observed.

Figure 10 shows some test conductance’s traces which have been created in order to obtain
scenarios with different spiking intensities. The first two rows present conductance’s traces
with low frequency oscillations at different phases: the first one presents high amplitude oscil-
lations, gsyn(t) = 0.2+0.2 sin(2πt/10), and the second one combines small with big oscillations,
gsyn(t) = 0.2+0.2 sin(2πt/10)+0.04 sin(2πt/5). In both cases we obtain a good estimation of
the conductance, according to the high concentration of points on the vicinity of the identity
line in the scatter plots; see the panels in the second column of Figure 10. The reconstruction
of membrane potential (vrec(t)) obtained using the estimated conductance’s trace ĝsyn(t) as
synaptic input show an excellent agreement with the original membrane potential trace; see
the panels in the last column.

In the last row of Figure 10, we consider a new conductance’s trace where both frequency
and amplitude of the small oscillations have been changed with respect to the results in the
second row, gsyn(t) = 0.4 + 0.2 sin(2πt/2) + 0.1 sin(2πt/20). In the left panel we can observe
that the estimated conductance does not match with the actual ones, where the fast oscillations
have not been captured. However, on the reconstruction of the membrane potential (see vrec(t)
in the right panel on the last row), the frequency is captured, the amplitude of the spikes is
not, and a small delay is presented.

From Figure 10, we conclude that for a slowly varying synaptic conductance, the method
proposed in Method 4.1 gives estimates of the time course of the synaptic conductance
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Figure 10. Goodness of fit of the synaptic conductance time course for different functions of gsyn. The first
column shows the estimated values of the discretization of gsyn (black dots) and the cubic spline interpolation of
them (red solid line). The black line corresponds to the actual value of the synaptic conductance at each time.
The second column represents the scatter plot of the actual versus the estimated synaptic conductance after the
interpolation. The red line is the identity line as a reference to observe the goodness of the estimation. The third
column shows a comparison of the voltages computed using the actual conductance (solid black trace) and the
estimated conductance (dotted red trace). Parameters are a = 0.25, v0 = 0, γ = 0.5, w0 = 0, vsyn = 0.25+a/2,
C = 0.001 µF/cm2, and I = 0.625 µA/cm2.

with small errors and reproducing the membrane potential with high accuracy. However,
confronted to abrupt changes, the performance of the method weakens and can only track
the mean time course of synaptic conductance, whereas the membrane potential is still well
reconstructed.

To test the estimation of the conductance’s course in a more realistic case, in Figure 11, we
use 1 ms conductance’s traces obtained from a computational network that models layer 4Cα
of primary visual cortex (see [18] and [23]). Panel A shows how the estimated conductance
follows the trace of the actual ones but, as we can also see in Figure 10, higher oscillations are
not well captured. We can corroborate this fact in panel B, where we show that the actual and
estimated conductance are poorly correlated (the coefficient of correlation is approximately
0.12). In panel C we compare the voltage computed using the actual conductance’s traces
and the estimated ones (after interpolation). One can appreciate a small time shift of order
0.1 ms that remains almost constant along the time sequence.
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Figure 11. Goodness of fit of the time course of synaptic conductance based on interspike intervals. Panel
A shows the estimated values of the discretization of gsyn (black dots) and the cubic spline interpolation of them
(red solid line). The black line corresponds to the actual trace of synaptic conductance. Panel B represents the
scatter plot of the actual versus the estimated synaptic conductance after the interpolation. The red line in panel
B is the identity line, left as a reference to observe the goodness of the estimation. Panel C shows a comparison
of the voltages computed using the actual conductance (solid black trace) and the estimated conductance (dotted
red trace). Parameters are a = 0.25, v0 = 0, γ = 0.5, w0 = 0, vsyn = 0.25 + a/2, C = 0.001 µF/cm2, and
I = 0.625 µA/cm2.

4.3. Generalization for nonconstant conductance’s traces: Estimation based on the
subperiods. In the previous section we have seen that for quickly varying conductance, we
cannot obtain good estimations. These misestimations are partly due to the fact that we
are assuming the conductance to be stationary in a quite long time window. To reduce the
errors and to better capture the oscillations of the synaptic conductance, in this section we
present a more accurate way to estimate gsyn(t) by taking advantage of the approximated
expression of each subperiod (the time spent in each region) separately in terms of gsyn,
obtained in the proof of Proposition 3.1(b). We denoted these subperiods as TL, TMu, TMd,
TR. Similarly, for any monodromic trajectory of system (1), not necessarily periodic, we can
split the trajectories into pieces lying on only one of the three regions. We denote by τξ the
time spent in region ξ to go from vξ,1 to vξ,2, where ξ stands for L, Md, Mu, or R, and the
crossing points vL,1 = vL,2 = vMd,1 = vMu,2 = a/2, vR,1 = vR,2 = vMd,2 = vMu,1 = (1 + a)/2.
We understand that regions Mu and Md are both the central region. With this notation, we
present a refined version of the estimation procedure given in Method 4.1.

Method 4.2. Consider a voltage trace {v(t), t ∈ [0, Tmax]} obtained from the neuron model
(1) under an (unknown) synaptic input {gsyn(t), t ∈ [0, Tmax]} and a specific applied current
I∗ such that they induce spiking activity. We assume that the voltage trace describes N

oscillations in the time interval [0, Tmax] and we define {τ (k)ξ }
N
k=1 as the time spent to go from

v = vξ,1 to v = vξ,2 in the kth oscillation, where ξ stands for L, Md, Mu, or R. Then, the
time course of the synaptic conductance gsyn(t) can be estimated by following the next steps:
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Figure 12. Goodness of fit of the synaptic conductance time course for the combination of low and high
frequency conductance. Panel A shows the estimated values of the discretization of gsyn (black dots) and the
cubic spline interpolation of them (red solid line). The black line corresponds to the actual value of the synaptic
conductance at each time. Panel B represents the scatter plot of the actual versus the estimated synaptic
conductance after the interpolation. The red line is the identity line as a reference to observe the goodness of
the estimation. Panel C shows a comparison of the voltages computed using the actual conductance (solid black
trace) and the estimated ones (dotted red trace). The other parameter values are a = 0.25, v0 = 0, γ = 0.5,
w0 = 0, vsyn = 0.25 + a/2, C = 0.001 µF/cm2, and I = 0.625 µA/cm2.

1. For each k = 1, . . . , N and ξ ∈ {L, Md, Mu, R}, solve

Tξ(C
∗, I∗, gsyn) = τ

(k)
ξ

in terms of gsyn, under the constraint (11), and call the solution ĝξ,ksyn.

2. Define the set P = {(tξ,k, ĝξ,ksyn); ξ = L, Md, Mu, R, k = 1, . . . , N}, where tξ,k is the
time when the kth oscillation crosses v = vξ,2.

As for Method 4.1, we finally interpolate the points of P to obtain an approximation of
the full time course of ĝsyn(t). Note that using Method 4.2 we can extract a more accurate
discretization of the conductance’s trace, as we can see in Figures 12 and 13. If we compare
the results from those obtained by using Method 4.1, for instance, comparing the last row
of Figure 10 to Figure 12, we observe how all the oscillations of gsyn(t) are captured both in
frequency and amplitude; concerning the reconstructed voltage in panel C, note that the delay
detected when using Method 4.1 has been washed out with Method 4.2. For in silico data (see
Figure 11(A) and Figure 13(A)), we can also appreciate an improvement of the estimation
when using Method 4.2 even though the improvement is more evident when conductance
changes abruptly. Hence, using Method 4.2 we can capture more oscillations.

When we apply Method 4.2 to the data obtained from the more realistic input to a single
cell in the visual cortex (see Figure 13), the agreement between gsyn(t) and ĝsyn(t) improves
notably. This fact is reflected more clearly in panel A (compared to the same panel in Figure
11) rather than in the scatter plot of panel B, where it is difficult to tell a higher concen-
tration of points around the identity line. Even though in this case the synaptic conduc-
tance is not perfectly estimated through time, we do capture the accurate mean conductance
(mean(gsyn) = 0.6350 and mean(ĝsyn) = 0.6381).
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C = 0.001 µF/cm2, and I = 0.625 µA/cm2.

5. Discussion. Difficulties in estimating synaptic conductance when the ionic channels of
the postsynaptic cell are activated have been extensively reported in the literature (see, for
instance, [5], [13], [26], and the references therein). The standard approach of filtering the
membrane potential and then fitting the filtered data to a linear model seems to work only in
subthreshold regimes with no active ionic currents. In these low-activity regimes it has also
been shown that quadratic models improve the estimations in a significant way. In spiking
regimes, however, one has to face a greater challenge since the magnitude of ionic currents is
far bigger than the magnitude of the synaptic currents. We need, then, a method that is able
to disentangle the ionic activity from the synaptic and, at the same time, to extract, from the
original recordings, a data set that can be useful to estimate the synaptic input that the cell
is receiving. In this manuscript, we have presented a proof of concept of how such methods
can be constructed, that is, how nonlinear estimation methods can be implemented in order
to estimate synaptic conductance in spiking regimes. Our method relies on the knowledge of
the f − I curve of the cell, a nonlinear trait that accounts for the activity of ionic channels
involved in the spike generation. The proposed methodology does not take into account other
features that could make the estimation more complex, like noise in the system or having
other type of nonlinearities.

We have exemplified the general idea with a simple model, the McKean model (1), a
piecewise linear version of the FitzHugh–Nagumo system, that allows us to perform analytical
computations and give a very accurate approximation of the f−I curve. The strategy proposed
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is easily extendable to other models or cell types, where the goodness of the estimations will
mainly depend on the accuracy achieved in computing the f − I curve. More precisely, for
the McKean model (1), we have restricted to the situation where it exhibits an oscillatory
behavior; given a constant value of gsyn, we provide an approximation T̂ = T̂ (C, I, gsyn)
of the period T such that |T − T̂ | = O(C0.88), which includes the dependence on gsyn. This
approximation has been obtained by taking into account the flight time of the fast and the slow
subperiods. Assuming the parameter gsyn to be constant in time, our results show excellent
estimations for small values of C (the parameter related to the capacitance) and also for those
values of I that are close to the boundaries of the oscillatory regime (see Figure 9). We think
that the method could be tested in dynamic-clamp experiments in which the neuron can be
first driven to a spiking regime that can be further modulated by a current injection of type
gsyn(v − vsyn), with gsyn constant.

The estimation procedure also has been extended to a more general and realistic context,
where we estimate the time course of variable synaptic conductance. In Figure 10 we show
estimations obtained from three different prescribed inputs: a sinusoidal drive, an oscillatory
drive with two low frequencies, and a combination of both low and high frequencies. We ob-
serve fairly good estimations of synaptic conductance in the first two cases, but the addition
of a high frequency makes the estimations poorer. In general, frequencies of the conduc-
tance’s changes higher than the spike frequency are difficult to estimate. The reconstructed
voltage using the estimated conductance (see vrec(t) in the last column in Figure 10) always
exhibits a good agreement, meaning that it is not a suitable detector for good estimations.
When we inject a stereotypical synaptic input to a single cell in visual cortex taken from a
realistic model of V1 (see Figure 11), the estimation captures the overall conductance profile
but does not match at a smaller scale. In realistic inputs, the conductance’s time-scale is
variable, being very short in some moments. Thus, we can only get a good estimation on
average.

In order to check the influence of high frequency synaptic inputs, we have improved our
method by refining the sampling, taking advantage of the knowledge of the subperiods TL,
TMd, TMu, and TR, thus enlarging the sampling set by a factor of 4. Figure 12 compared to
the last row of Figure 10 confirms the predicted improvement. For realistic input, however,
we appreciate only a slight improvement (see Figure 13 compared to Figure 11).

Summing up, we have shown the viability of the approach based on the use of the f − I
curve in order to estimate synaptic conductance in spiking regimes. We have also examined
the drawbacks of this proof of concept, but nevertheless we think that our proposal brings up
positive results that open new research lines which we aim to address:

• The gain obtained when increasing the sampling indicates that introducing more
Poincaré sections to estimate flight times in shorter intervals would be a good strategy
to cope with high frequency synaptic inputs. Extending this reasoning to the limit,
we plan to add to the model a third differential equation modeling the dynamics of
the synaptic conductance. This would allow us to obtain good estimations in a more
general context and provide a scheme to be applied to experimental data.
• The scheme need to include both excitatory and inhibitory terms. We have only

considered one type of synaptic input. In the examples, we have chosen vsyn = 1/4 +
a/2, a value that could be attributed to excitatory synapses. However, a key aspect
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Figure 14. Monotonicity of T̂ (C, I, gsyn) with respect to gsyn. This figure shows different plots representing
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C = 1e− 4, a = 0.25, v0 = 0, w0 = 0, γ = 0.5, and vsyn = 0.25 + a/2.

in estimating conductance is to differentiate between excitation and inhibition. We
think that this step is feasible within the frame of the McKean model.
• The methodology needs to be tested in other conductance-based models with more

realistic ionic channels. This extension will require getting approximate expressions
of the period in terms of gsyn, a challenging problem that can be successfully treated
by adapting existing formulas for the period of limit cycles close to bifurcation points;
see, for instance, [12].
• Combine the new methodology for spiking regimes with existing estimations for sub-

threshold oscillations. This issue connects again with bifurcation diagrams since an
ideal method should apply to a variable synaptic input that sweeps the I parameter
range from excitable to spiking regimes and vice versa. It also opens an interesting
question about the influence of the type of bifurcation (Hopf, saddle-node on invariant
curve, etc.) on the goodness of the estimations.

Appendix A. Evidence of the monotonicity of T̂ . In Figure 14 we represent the function
T̂ (gsyn) (panel A) and the derivative ∂T̂ /∂gsyn (panel B) for the set of parameter values used
in all the numerical computations, except for the applied current which varies (different colors)
in the range of existence of limit cycles. It is worth noting (see, for instance, panel B), that
for all the applied currents considered we have that ∂T̂ /∂gsyn < 0. In all the results given
above, we use this numerical evidence together with an on-line check that the derivative does
not vanish to ensure that the solution we get from equation (10) is unique.

Appendix B. Numerical methods. In the numerical computations, to solve equation (10)
we need the time spent on some trajectory, T ∗, that has to be computed numerically. We
have computed these values by integrating the orbits and determining the intersection points
with the corresponding Poincaré section using both the Newton–Raphson method and the
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bisection method with a tolerance TOL = 1e− 11 (see Appendix B.1 for more details of the
routine). The same methods have been used to estimate the synaptic conductance gsyn with
tolerance TOL = C2.

In order to integrate the differential piecewise linear system we have used the Runge–
Kutta 7-8 method with tolerance TOL = 1e− 8 and a maximal step size hmax = 1e− 1. We
have used the edo78 function of MATLAB.

Finally, we have used the spline function of MATLAB to compute the cubic spline inter-
polation used to construct the continuous time course of the estimated synaptic conductance
in Methods 4.1 and 4.2.

B.1. Routine to compute the numerical period. Consider the solution (5) of the model
given by the piecewise differential system (1).

(a) Let x0 = (a2 , w0) = qL, T̄0 = 0 be the initial condition.
1. Let x0 be the initial condition and compute TMd as a zero of the equation v(t)− 1+a

2 .
Then, knowing t = TMd, we can compute w1 = w(TMd), and so we obtain a new
point x1 = (1+a2 , w1).

2. Let x1 be the initial condition and compute TR as a zero of the equation v(t)− 1+a
2 .

Then, knowing t = TR, we can compute w2 = w(TR), and so we obtain a new point
x2 = (1+a2 , w2).

3. Let x2 be the initial condition and compute TMu as a zero of the equation v(t)− a
2 .

Then, knowing t = TMu, we can compute w3 = w(TMu), and so we obtain a new
point x3 = (1+a2 , w3).

4. Let x3 be the initial condition and compute TL as a zero of the equation v(t)− a
2 .

Then, knowing t = TL, we can compute w4 = w(TL), and so we obtain a new point
x4 = (a2 , w4).

5. Compute T̄ = TL + TMd + TR + TMu

(b) If |w0 − w4| < TOL or |T̄0 − T̄ | < TOL, we are done: the numerical period is T̄ .
Otherwise, let x0 = x4, T̄0 = T̄ , and repeat steps 1–5. We have considered TOL =
1e− 10 for this step.
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